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PROXY-LABEL SEMI-SUPERVISED DEEP LEARNING FOR
OBJECT DETECTION AND MAPPING IN SYNTHETIC APER-
TURE SONAR IMAGERY

S Steele Kraken Robotics

1 INTRODUCTION

Seabed geohazard detection is a requirement for many different types of surveys including hydrographic,

habitat, and infrastructure installation (such as cable, pipeline, and offshore wind). In many applications

geohazards as small as 20 cm must be detected over large areas. The resolution of side looking sonar

imagery strongly impacts the quantity of boulders that can be detected in imagery1, thus the range inde-

pendent resolution of synthetic aperture sonar (SAS) makes it an ideal sensor for geohazard detection.

Manually identifying and classifying geohazards in SAS imagery is time consuming, creating a bottleneck

in project delivery. The application of deep learning for seabed segmentation has the potential to sub-

stantially reduce the cost associated with geohazard detection. Supervised deep learning demands an

extensive collection of training images, which requires considerable time and resources to generate. In

contrast, semi-supervised learning attempts to train a model through the use of a dataset consisting of a

small set of labelled training samples and a large number of unlabelled samples. Here, we explore ap-

plying the proxy-label semi-supervised learning method to SAS imagery. Previous work in the application

of semi-supervised learning to object detection in SAS imagery has focused on autoencoders or archi-

tectures analogous to autoencoders, which are self-supervised models that rst encode an image into a

lower dimensional latent representation, then decode the representation to reconstruct the image. These

learned representations can be used to perform semi-supervised learning for segmentation or classica-

tion tasks. In the SAS domain these tasks have been trained jointly using architectures such as the ladder

network (performs classication, reconstruction, and segmentation)2 or as two separate steps where the

model is rst trained to reconstruct SAS imagery and then later ne-tuned to perform classication3. Our

approach, proxy-label semi-supervised learning, is more akin to bootstrapping. With this technique no

image reconstruction step is required, instead we rely on a teacher convolutional neural network (CNN)

to generate proxy-labels (i.e. noisy or imperfect labels) for a large set of unlabeled SAS images, which

can then be used to train another CNN model referred to as the student. There are numerous categories

of proxy-label techniques including self-training, co-training, and multi-view learning4. Even though the

architecture presented in our work trains a new model with the proxy-labels, we still consider it to be a

form of self-training. Our approach can be considered a variation of the pseudo-label technique5, which

trains on labeled and unlabeled data simultaneously with two forward passes. In this text we will refer

to any model architecture that assigns proxy labels to unlabelled data, which are used as targets for

learning, as proxy-label techniques, and reserve the term pseudo-label for the original paper that intro-

duced the pseudo-label architecture. The pseudo-label and other proxy-label semi-supervised learning

techniques have been shown to increase model robustness and generalisation, even when training data

is abundant5,6.

The primary differences between our proxy-label technique and the pseudo-label technique are the num-
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ber of forward passes (ours only requires one, making it faster to train) and the treatment of noisy labels.

To minimize the impact of noisy labels, most proxy-label methods either: 1) weight the unlabeled data

training loss such that their contribution increases over time (i.e.,model epochs)5, or 2) utilize only high

condence predictions for training by choosing a condence threshold, which can either be absolute or

relative (i.e., the top N unlabeled training samples are used in training the next iteration)7. Our proxy-label

approach does not require a proxy-label weighting parameter or cutoff. Here, we utilize a CNN pre-trained

to identify objects in optical imagery (VGG168) as the teacher model and a U-Net9 model architecture

for the student model. In previous work, the teacher model was ne tuned to detect geohazards in SAS

imagery using transfer learning on a small set of labeled SAS images10. Thus, no condence threshold or

weighting is required because, with the transfer learning, we can consider all predictions to be high con-

dence. We also utilize data augmentation and dropout to add noise to the student model, which increases

generalization by reducing overtting (i.e., the model is ”forced to learn harder”6 from the proxy-labels).

The teacher model was used to generate a large set of labeled SAS images to train a student network

with the specic task of detecting geohazards in SAS imagery. In this paper we will explore how different

combinations of SAS derived features (such as bathymetry and vertical uncertainty) impact the student

model performance. To the author’s knowledge, the only SAS feature utilized in the literature to train deep

learning models for object detection has been imagery (both intensity and complex). This paper will also

explore the impact of using the teacher model condence to assign a weighting to each pixel during stu-

dent network training. Results from our proxy-label learning framework will be demonstrated on imagery

collected during numerous surveys using a Kraken Robotics miniature interferometric SAS (MINSAS).

2 METHODS

The proxy-label semi-supervised learning technique consists of a teacher network trained on a small

manually labeled (i.e., ground truth) dataset and a student network trained on a large set of proxy-labels

produced by the teacher network. A generalized workow of our implementation of the proxy-label tech-

nique can be found in Figure 1. We leverage a previously developed CNN trained to segment geohazards

in SAS imagery through transfer learning on a small dataset of ground truth labels10. We used this

transfer learning model to generate predictions and condence weights for thousands of unlabelled SAS

images from numerous surveys. These predictions were utilized as noisy image labels to train a new

student network that incorporates other SAS derived features not typically utilized for CNN training such

as bathymetry and vertical uncertainty.

2.1 Teacher Model

The teacher model follows the U-Net architecture9, which consists of a contracting and expansive path.

The contracting path can be any CNN, while the expansive path uses up-convolutions and concatenations

to combine the CNN features with spatial information to produce a high resolution segmentation map.

We chose the VGG16 architecture pre-trained on ImageNet11 data as the base CNN (contracting path)

because it has been shown to be highly effective at detecting objects in SAS imagery with the application

of transfer learning12. The ImageNet dataset consists of over 1.2 million training images belonging to

1000 different classes. The VGG16 model lters learned from the ImageNet data can be modied to

detect boulders through the ne tuning transfer learning technique. To ne tune a model some layers

are frozen such that their weights don’t update during training. The layers that are not frozen utilize the

weights as a starting point and the model adjusts the weights based on our training data. We found the

model performed best when all the convolutional layers of the VGG16 network were frozen except the last

two. To help prevent overtting during ne tuning we applied the following augmentations: ip (horizontal

and vertical), brightness, and zoom. The teacher model on its own yields satisfactory predictions; it
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Figure 1: Flow diagram for the proxy-label technique using a teacher model to train a student

model. Dotted lines indicate optional calculations and inputs.

achieved a mean IoU of 0.78 on the validation data during training. The teacher outputs the target class

(geohazard) probability of each pixel, and thus these must be converted to binary proxy-labels using a

threshold during preprocessing before training the student model. We experimented with target class

thresholds between 0.2 and 0.7, but found a target class threshold of greater than or equal to 0.3 yields

the best mean IoU on the validation data. As shown in Figure 1, we can also use the teacher model

predictions to calculate the condence for each pixel so that weights can be applied to the training data.

The intention of this technique is to minimize the impact of low condence predictions on the student

model training. Since the teacher model outputs the probability of the target class, we cannot use the

predictions directly as condence (this would cause all background pixels to be given low condence).

The condence weights (C) can be calculated from the model predictions (probability map, P) and target

class threshold, T , with

C =



1− P, if P < T

P, otherwise.

2.2 Student Model

Like the teacher model, the student model follows the U-Net architecture9 to produce semantic segmenta-

tion predictions. The student model utilizes a similar contracting path CNN architecture to that presented

in the U-Net publication9. The U-Net contracting path consists of the repeated application of two 3x3

convolutions followed by a rectied linear unit (ReLU), and a 2x2 max pooling operation with stride two

down sampling, which reduces spatial resolution. After each down sampling, there is a doubling of the

number of convolution feature channels, causing the model’s capacity for feature information to go up as

the spatial resolution decreases. The nal layer of the U-Net model is a 1x1 convolution used to map

each feature vector to the desired number of classes. The U-Net model was originally developed for

bio-medical imaging with a single channel input. Here, we will compare multiple versions of the student

model utilizing various combinations of one to three channels. In particular we compare the student model

trained with the following channel combinations: 1) image intensity, 2) image intensity and bathymetry, 3)
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image intensity and vertical uncertainty, and 4) image intensity, bathymetry, and vertical uncertainty. In

Tables 1 and 2, we will use the following naming conventions for different feature combinations: dB refers

to the use of the SAS intensity image, bathy refers to the inclusion of bathymetry feature, and vu refers

to the inclusion of the vertical uncertainty feature. The VGG16 base model of the teacher has over 25

million parameters and is likely larger than necessary for our binary semantic segmentation task. Thus, it

is desirable to make the student model as small as possible, without sacricing performance (knowledge

distillation13). We can achieve knowledge distillation by ensuring the student network is smaller (has

fewer layers and/or feature channels) than the teacher network. The student model was trained with one

less application of convolutions than the original U-Net architecture, yielding 18 convolutional layers. For

comparison, there are 23 convectional layers in the original U-Net architecture (10 in the contracting path,

13 in the expansive path), while the VGG16 model has 13 convolutional layers and three fully connected

layers. We chose to reduce the number of starting feature channels from 64, as done with the original

U-Net model and VGG16, to 16 feature channels. In total, the student model has 535,793 parameters,

which corresponds to about 2 % of the size of the teacher model. The student model was trained with a

batch size of 32, learning rate of 1× 10
−4, and a dropout rate of 0.1.

2.3 Data

The Kraken MINSAS consists of two vertically separated receiver arrays, which provide co-registered

seabed imagery and bathymetry at 3 cm and 25 cm resolution, respectively. From the bathymetry, vertical

uncertainty maps can also be generated at 25 cm resolution. The MINSAS has a modular conguration,

enabling the selection of different array lengths to accommodate desired vehicle, size, speed, and area

coverage rates. The MINSAS has a modular array that can be congured with one to four receiver

modules (MINSAS 60, 120, 180, and 240). The MINSAS operates at a centre frequency of 337 kHz

with a bandwidth of 40 kHz. The MINSAS can optionally include gap reducer imagery. The gap reducer

narrows the SAS nadir gap through the use of an additional transmitter operated at a lower frequency

(105 kHz, with 40 kHz bandwidth) and a relatively wider beampattern14. Not all MINSAS surveys include

the gap reducer, but where applicable we include the gap reducer data in our datasets. Data collected

by the MINSAS over numerous surveys was used to train the student and teacher network. The teacher

model was trained with 350 ground truth labels with a a training and validation split of 85% and 15%,

respectively. The student model was trained with the ground truth labels and approximately 4000 images

proxy-labeled by the teacher. The manually labeled and proxy labeled data were combined into one

dataset. To help control for luck and randomness induced by the proxy labeled dataset, we utilize k-folds

cross validation for comparing the performance of the various different student model input channels

described in Section 2.2. In k-folds cross validation the training dataset is randomly divided into k subsets

(folds). The model is trained and evaluated k times, using a different fold as the validation set each time,

while the remaining folds are used as the training data. The performance metrics can be averaged over

all the folds to get a more complete and unbiased performance estimate. We chose to use ve folds for

our analysis because this allows for each model run to use 20% of the data for validation. Additionally,

using ve folds has been empirically shown to yield estimates that do not suffer from excessively high bias

or high variance15. In this paper we will present results from two different test sets. The rst test dataset

(Test A) was used for comparing the different student models and was generated by manually sorting

the training model predictions into high accuracy (no or very few incorrect pixel labels observed) and low

accuracy. A portion of the high accuracy predictions representing 15% of the entire proxy-labeled dataset

(approximately 40% of the high accuracy predictions) was set aside as a test dataset. The remaining data

was recombined into one dataset to be later split into ve folds of training and validation data. The second

test dataset (Test B) utilizes the teacher validation set to evaluate the student model on ground truth labels

and allow us to assess if the student can outperform the teacher. Test A and Test B datasets consist of

pools of imagery from different surveys, with no overlap (i.e., data from a given survey is included in only

one of Test A or B).
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Table 1: Test A mean IoU for all cross validation folds and model runs, which includes all feature

combinations with condence weights applied (W = C) or no weights applied (W = 1). Top row is

the mean computed across all ve k-folds for each student model.

dB dB bathy dB vu dB bathy vu

W = 1 W = C W = 1 W = C W = 1 W = C W = 1 W = C

Mean 0.80 0.82 0.78 0.82 0.80 0.81 0.80 0.82

k=0 0.82 0.80 0.82 0.82 0.81 0.82 0.78 0.80

k=1 0.82 0.84 0.79 0.81 0.82 0.82 0.80 0.83

k=2 0.82 0.80 0.80 0.80 0.78 0.80 0.78 0.83

k=3 0.74 0.83 0.74 0.83 0.77 0.80 0.81 0.80

k=4 0.82 0.81 0.76 0.83 0.80 0.82 0.83 0.83

For both the teacher and student models the SAS intensity images were preprocessed with a gaussian

blur to minimize the impact of speckle. Following this, all SAS features were downsampled to a size of

224 by 448 pixels. This size was chosen as it generally preserves the aspect ratio of the original SAS

data and preserves enough detail to detect geohazards as small as 20 cm in diameter. The factor by

which each SAS feature is downsized is variable because each SAS image can vary in size (depends on

the survey settings) and not all SAS features are reported at the same resolution.

3 RESULTS AND DISCUSSION

A summary of the test set (Test A) mean IoU for all the cross validation folds for each student model

feature combinations are shown in Table 1. All versions of the student model are high performing, with

all achieving a mean IoU 0.80-0.82. The application of the condence weights consistently improves

the average model performance by 0.01-0.04. The inclusion of the low resolution features (bathymetry,

and vertical uncertainty) does not signicantly impact the student model performance. It is likely that

the lower resolution features lack any attributes to denote smaller objects such as boulders, effectively

adding either no additional information or even adding noise. The student model performance on the Test

B dataset has been summarized in Table 2. The teacher model can achieve a mean IoU of 0.76 over the

Test B dataset, while all the student models can achieve a mean IoUs of 0.78-0.81, indicating the student

model is highly skilled at knowledge distillation; the student models can maintain and even increase

model performance while using only 2 % of the parameters. Similar to Test A, we see that, for all feature

combinations tested, on average the student model performs better when the teacher condence weights

are used. Interestingly, we observe that the best performing model includes both the image intensity

and bathymetry features. The inclusion of the bathy feature along with the image intensity feature only

marginally increases the performance and thus may not be considered signicantly better than just using

the intensity feature, especially if one considers the additional processing and complexity introduced by

doubling the number of features. In addition to being a skilled knowledge distiller, the student models

have also shown evidence of improved generalization in comparison with the teacher; the student models

are capable of distinguishing geohazards from noise artifacts and other seabed features (such as ridges)

where the teacher can’t (Figure 2).

Overall the mean IoU values achieved by the model may seem relatively low overall, especially in terms

of the application to commercial boulder detection. In semantic segmentation it is challenging to nd a

metric that can accurately quantify the accuracy of the labels, especially for applications such as boulder
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Table 2: Test B mean IoU for all cross validation folds and model runs, which includes all feature

combinations with condence weights applied (W = C) or no weights applied (W = 1). Top row is

the mean computed across all ve k-folds for each student model.

dB dB bathy dB vu dB bathy vu

W = 1 W = C W = 1 W = C W = 1 W = C W = 1 W = C

Mean 0.78 0.79 0.79 0.81 0.78 0.79 0.78 0.80

k=0 0.80 0.78 0.76 0.82 0.79 0.80 0.81 0.81

k=1 0.75 0.80 0.74 0.81 0.77 0.77 0.79 0.78

k=2 0.79 0.77 0.79 0.79 0.78 0.78 0.77 0.81

k=3 0.80 0.82 0.79 0.80 0.79 0.79 0.77 0.82

k=4 0.79 0.77 0.80 0.81 0.78 0.80 0.77 0.77

(a) Teacher (b) Student (dB feature only)

(c) Teacher (d) Student (dB feature only)

Figure 2: Comparison of predictions from teacher model (left) and student model (right) on a

SAS image featuring ridges and scours as well as geohzards (top) and an image featuring noise

artifacts (bottom). SAS intensity images are overlaid with model predictions, where red is the

target class and blue is the background class.
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(a) Ground Truth (b) Student (dB feature only)

(c) Ground Truth (d) Student (dB feature only)

Figure 3: Comparison of ground truth labels (left) with predictions from dB student model (right).

SAS intensity images are overlaid with model predictions, where red is the target class and blue

is the background class.

detection where there may be many adjacent or overlapping small objects, and thus the exact boundaries

of the label can be subjective and although quantitatively different, make no real difference qualitatively.

For example in Figure 3 (top), there is no qualitative difference in the teacher and student labels, they

both effectively capture the regions containing boulders; however the mean IoU score between these

two segmentation labels is 0.68. Thus we can still get high quality predictions, even if the score seems

quantitatively low. Mean IoU and other similar metrics such as dice score are highly sensitive to small

errors when a given class represents a small portion of the image, causing the metric to remain low, while

still providing qualitatively satisfactory labels. For example, if an image label has only a single pixel for a

class but the model predicts three pixels for that class the IoU for that class would be 0.33. This can have

a signicant impact on our dataset, where some images may only have a few boulders scattered across

the entire image, resulting in a limited number of target class pixels. This is demonstrated in Figure 3

(bottom), these labels are qualitatively similar but have a mean IoU of 0.74.

4 CONCLUSION

Using the proxy-label technique, we can improve model performance by up to 5 % while reducing the

model size by 98%. The inclusion of the teacher condence weights in the student model consistently

improved the student performance by 1-4%. The inclusion of additional features (bathymetry or vertical

uncertainty) did not signicantly improve the model performance. It is likely that the resolution of these

additional features are too low to provide useful features for detecting small objects. We observed evi-

dence that the proxy-label technique helped increase model generalization across all model runs. The

teacher network often falsely identied noise artifacts and portions of seabed features such as ridges

as geohazards; however, the student network was able to generalize and distinguish noise and other

seabed features from geohazards. Future work will focus on implementing and comparing variations of
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the proxy-label technique demonstrated in the literature, which could include using the student network

to update the teacher network as well as applying the original pseudo-label technique. Future work may

also explore further knowledge distillation.
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