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ABSTRACT

Manually identifying objects in synthetic aperture sonar
(SAS) imagery is costly and time consuming, making identifi-
cation through computer vision and deep learning techniques
an appealing alternative. Depending on the application, a
generalized map (semantic segmentation) and/or a charac-
terization of each individual object (object detection) may
be desired. Here, we demonstrate a framework that allows
us to simultaneously generate both semantic segmentation
maps and object detections with a single deep learning model
by chaining together a U-Net model with k-means cluster-
ing and connected components. This framework streamlines
the model training phase by allowing us to utilize a set of
semantically segmented training data to yield both semantic
segmentation and bounding box predictions. We demonstrate
that the deep learning model can achieve accurate predictions
with a small training set through transfer learning from a
convolutional neural network pretrained on optical imagery.
Results from this unified framework will be presented on
images of boulders collected during various surveys using a
Kraken Robotics miniature SAS (MINSAS).

Index Terms— Synthetic Aperture, Sonar, Object Detec-
tion, Seabed, Segmentation

1. INTRODUCTION

Many seabed object detection applications such as mine hunt-
ing and geohazard detection require centimeter scale resolu-
tion over large survey areas, making SAS an ideal sensor for
object detection. This is especially true for boulder detec-
tion applications where it has been shown that the resolution
of side looking sonar imagery strongly impacts the quantity
of boulders that can be detected [1]. Deep learning object
detection workflows can be broken down into two concepts
termed classification and localization. Convolutional neural
network (CNN) based detectors may perform these in one or
two stages. The primary limitations of the two-stage approach
are its computation expense and often imprecise bounding
boxes that may contain more than one object, especially if the
objects are overlapping or small [2]. The one stage approach
has more precise bounding boxes, but it often misses smaller
objects and thus detects fewer objects overall [2]. Boulder

detection in SAS imagery requires the detection of small ob-
jects that are often densely populated and overlapping. The
size of the objects that are required to be detected in SAS im-
agery is significantly smaller than most optical imagery object
detection tasks. The COCO (Common Objects in Context)
benchmark dataset consisting of over 200,000 labeled optical
images [3] defines small objects as objects having pixel ar-
eas of less than 322 pixels [4], since the COCO image size
is 640 x 480 pixels, this is equivalent to an object taking up
0.33 % of the image pixels. For comparison, the average area
of boulders detected in our SAS imagery is 3 × 10−6% of
pixels. Thus, existing approaches to object detection with
CNNs may not be optimal for boulder detection in SAS im-
agery. Here, we propose and evaluate a new approach to ob-
ject detection that utilizes deep learning to perform semantic
segmentation and computer vision techniques to select object
bounding boxes based on the semantic segmentation output.
The primary advantages of this approach are:

• Allows for object detection capabilities without object
detection training data, which is extremely labor inten-
sive in SAS imagery.

• More interpratable bounding box output. Deep learning
approaches are black boxes and thus we are not able to
monitor or modify their outputs. However, computer
vision techniques provide more control opportunities.

• From a single CNN we can produce an overview map
indicating regions that contain boulders as well as de-
tections of individual objects. These can be combined
to generate summary maps of the boulder size distribu-
tion and other statistics of regions with boulders.

This paper has two novel contributions: 1) the novelty of the
framework itself (including a new technique for calibrating
k-means centroids across many images), and 2) while there
is previous work applying transfer learning from optical im-
agery to SAS imagery for mine detection [5, 6], to the author’s
knowledge this is the first application for geohazard detection.

2. METHODS

Our new proposed framework can be broken down into two
major steps: semantic segmentation using deep learning and
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object detection with computer vision. The first task of the
deep learning framework was to generate training data using
the “lazy labelling” technique, where polygons were drawn
around individual boulders. When boulders were overlapping
or adjacent to one another, a single polygon was drawn around
that region. This training data was then fed into a convolu-
tional neural network (CNN) designed to produce segmen-
tation maps by labelling the pixels as either target (boulders
present) or background (no boulders present). The output pre-
diction map does not discriminate between adjacent rocks or
the boulder shadows. Thus, k-means clustering was utilized
to discriminate between adjacent boulders and their shadows
to obtain an improved segmentation map. This improved seg-
mentation map is generally sufficient to produce individual
boulder detections using connected components.

2.1. Semantic Segmentation

Semantic segmentation typically requires some form of fully
convolutional neural network (FCN) to be able to localize fea-
tures within the image. Here, we have chosen to follow the U-
Net architecture [7], as it has been shown to produce accurate
predictions, even with a small training set. The architecture
of U-Net follows a u-shape consisting of a contracting and an
expansive path. The contracting path is a typical CNN while
the expansive path utilizes a sequence of up-convolutions and
concatenations to increase the resolution of the output. Due
to the limited size of our training data we utilize a pre-trained
CNN for the contracting path instead of training our own
CNN from scratch. We chose the VGG16 architecture pre-
trained on ImageNet [8] data as our base CNN. The VGG16
network has been trained to detect objects belonging to 1000
different classes. The filters this network has generated can
be modified to detect boulders through the fine tuning trans-
fer learning technique. To fine tune the model we freeze some
layers such that their weights don’t change and for the rest we
utilize the weights as a starting point and the model adjusts the
weights based on our training data. We found the model per-
formed best when all the convolutional layers of the VGG16
network were frozen except the last two.

2.2. Object Detection

To detect individual targets identified in the semantic segmen-
tation maps we utilize a computer vision technique known
as connected components [9]. Connected components is a
method for detecting objects in binary imagery. The algo-
rithm picks out individual objects based on the target class
pixel connectivity and assigns each connected component a
label. Here, we use a connectivity of 8, meaning the tar-
get pixels are considered connected if their edges or corners
touch. The algorithm then iterates through 2 steps. First, it
searches for the next unlabeled target pixel, p. It then utilizes
a flood-fill algorithm to label all the target pixels in the con-
nected component. These steps are repeated until all the tar-

(a) SAS image input to CNN.

(b) CNN predicted segmentation map for the image in Fig. 1a.
White is the target class and black is the background.

(c) Grey scale k-means input image with background pixels in Fig.
1b set to an intensity of zero.

(d) Labels for Fig. 1c determined by k-means clustering.

(e) Bounding boxes identified by the connected components algo-
rithm using the labels from Fig. 1d.

Fig. 1: Overview of method to produce object detections from
semantic segmentation maps.



get pixels are labeled. The connected components algorithm
yields a list of pixels included in each target, which can then
be used to characterize and draw a bounding box around each
object.

If we feed our semantic segmentation maps directly into
the connected components algorithm the results will be sub-
optimal in areas where boulders are densely packed because
the adjacent boulders will look like one object when viewed
as a binary mask. Thus, we need a method for removing the
shadows and gaps between boulders that have been labeled
as the target class. We can do this using k-means clustering.
The k-means algorithm is not sophisticated enough to identify
boulders from other seabed features using the raw imagery,
largely due to the two classes overlapping in feature space
with no obvious clusters. Instead, we can utilize the CNN
semantic segmentation output to simplify the problem to one
suitable for k-means. A new image is constructed by convert-
ing the SAS image (Fig. 1a) to grey scale and setting all the
pixels labeled as background in the segmentation map (Fig.
1b) to zero (Fig. 1c). This decreases the complexity of the
problem by removing the background seabed texture and fea-
tures, reducing the k-means segmentation task to separating
the low intensity background pixels and the higher intensity
target pixels. In this scenario the k-means algorithm is effec-
tive at labeling our target class because the two classes form
two distinct clusters in feature space. Using the segmentation
map output from k-means clustering (Fig. 1d) the connected
components algorithm can identify a majority of the boulders
individually (Fig. 1e). In imagery with numerous boulders
we can end up with large patches of seabed labeled as target
pixels (Fig. 2b). In this case, image intensity alone is not suf-
ficient for differentiating boulders and background. We can
easily avoid this by introducing a texture measurement as an
additional feature in the k-means algorithm (Fig. 2c). Here,
we use local range, computed in 3x3 pixel windows.

Various different seabed types can have drastic differences
in intensity. If this variation is significant within a single
image, the k-means segmentation map and resulting bound-
ing boxes may not appropriately separate target and back-
ground pixels, resulting in errors such as the large bounding
box drawn around the higher intensity seabed sediment ob-
served in the top image of Fig. 3. This can be avoided by pre-
generating the k-means centroids through a technique we’ve
termed k-means calibration. The objective of k-means cali-
bration is to choose target and background centroids in fea-
ture space that will represent the entire data set. For computa-
tionally efficiency, we randomly select across-track strips of
data from different imagery. We start with a single strip from
a single image and run k-means to generate the initial cen-
troids. We then iteratively add randomly selected strips to the
k-means input feature vector until the target and background
centroids converge. These centroids can then either be used
directly to produce the final segmentation maps (without hav-
ing to run k-means on each individual image). As observed

in the bottom image of Fig. 3, with k-means calibration we
see a drastic improvement in the number of targets detected,
especially in the high intensity region (left side) of the image.

For model performance assessment, object detection net-
works generally return a confidence score for each bounding
box. The confidence score (C) is estimated as

C = Pr ∗ IoU (1)

where Pr is the probability of the detected object’s class and
IoU is the intersection over union between the ground truth
and predicted bounding box. We do not have a probability as-
signed to each bounding box but we do have probabilities as-
signed to each pixel. We estimate Pr to be the mean probabil-
ity of the target class pixels contained within a given bounding
box. Manually labeled (ground truth) bounding boxes were
not available to us, so instead we utilize the technique de-
scribed above to generate bounding boxes from the validation
set ground truth segmentation maps. We also utilize these
bounding boxes to quantitatively estimate the object detection
model performance through the precision-recall (PR) curve.
A well performing model will maximize the area under the
PR curve (AUC). The AUC can be used to estimate the aver-
age precision (AP) of the object detection model. We follow
the PASCAL VOC challenge guidelines [10] to calculate an
AP for our model.

2.3. Data collection and processing

A dataset of 338 labeled SAS images from various MINSAS
surveys was generated. We split the labeled dataset into a
training set of 287 images and a validation set of 51 images.
Since the validation set is not used in the model training in any
way (including hyperparameter tuning and early stopping),
we will also utilize it to evaluate the model performance af-
ter training. Speckle in the SAS imagery is reduced with a
gaussian blur. Following this we downsample the images by
a factor of four as the SAS imagery is quite large (on the order
of 5 million pixels per image). SAS imagery is also variable
in size, and thus all the images must be resampled to be the
same size for input into the CNN. We have chosen an image
size of 224 x 448, as this size should be sufficient to preserve
the aspect ratio of the SAS imagery. However, once the model
is trained, we make predictions on the variably sized gaussian
blurred and downsampled version of the images.

3. RESULTS AND DISCUSSION

The CNN model was trained with early stopping to prevent
overfitting. Overall, the model yields satisfactory predictions;
the model can achieve a Dice coefficient of 0.96 on the vali-
dation set. For the bounding box prediction performance we
present two different PR curves based on different segmenta-
tion target class probability (P ) cut-offs: 1) label pixels with
P > 0.5 as the target class and, 2) label pixels with P > 0.3



(a) SAS image input to CNN.

(b) Fig. 2a overlayed with labels determined by k-means
clustering with only image intensity as a feature. Blue is
background class, green is the target class.

(c) Fig. 2a overlayed with labels determined by k-means
clustering using intensity and texture features. Blue is
background class, green is the target class.

Fig. 2: Including intensity and texture features in k-means can
allow individual boulders to be detected in high density areas.

as the target class (Fig. 4). A no-skill classifier PR curve
would be a horizontal line. The model achieves an AP of 0.67
and 0.54 for the P > 0.3 and P > 0.5 cut-offs, respectively,
indicating that P must be chosen to meet the desired perfor-
mance. If we use P > 0.5 the model will have high precision
and thus it will return few false positives but will suffer in re-
call. If P > 0.3 the model will identify more targets (higher
recall), but it will also yield more false positives (decreased
precision).

Fig. 3: Top: bounding boxes generated from k-means seg-
mentation map without calibration. Bottom: bounding boxes
generated from k-means segmentation map with calibration

Fig. 4: PR curve for object detection on validation data.

4. CONCLUSION

Here, we presented a novel technique to obtain semantic seg-
mentation maps and object defections from a single CNN.
The framework relies on computer vision techniques to derive
object detections from semantic segmentation maps. There
are many benefits of this unified framework, including eas-
ier ground truth labeling and the capability to provide object
detection summary maps with corresponding details (such as
boulder size distribution). Using transfer learning and a small
number of training images we can produce semantic segmen-
tation maps that achieve a Dice coefficient of 0.96 on valida-
tion data. We can achieve an AP of up to 67 % for object
detections derived from the predicted segmentation maps.
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[1] Gitta von Rönn, Klaus Schwarzer, Hans-Christian
Reimers, and Christian Winter, “Limitations of boulder
detection in shallow water habitats using high-resolution
sidescan sonar images,” Geosciences, vol. 9, no. 9, pp.
390, 2019.

[2] Khaoula Drid, Mebarka Allaoui, and Mo-
hammed Lamine Kherfi, “Object detector combination
for increasing accuracy and detecting more overlap-
ping objects,” Image and Signal Processing: 9th
International Conference, ICISP 2020, June 2020.

[3] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick, “Microsoft coco: Common ob-
jects in context,” Computer Vision – ECCV 2014, p.
740–755, 2014.

[4] “Microsoft coco: Common objects in context, metrics,”
https://cocodataset.org/detection-eval.

[5] N Warakagoda and Ø Midtgaard, “Transfer learning
with deep neural networks for mine recognition in sonar
images,” Proceedings of the International Conference
on Synthetic Aperture Radar and Sonar, Lerici, Italy,
2018.

[6] N Warakagoda and Ø Midtgaard, “Retrieval of simi-
lar targets in synthetic aperture sonar images with deep
learning,” Proceedings of the International Conference
on Underwater Acoustics (ICUA), 2020.

[7] Olaf Ronneberger, Philipp Fischer, and Thomas Brox,
“U-net: Convolutional networks for biomedical image
segmentation,” International Conference on Medical
image computing and computer-assisted intervention-
MICCAI 2015, 2015.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei, “Imagenet: A large-scale hierarchical
image database,” 2009 IEEE Conference on Computer
Vision and Pattern Recognition, 2009.

[9] Rafael C Gonzalez, Digital Image Processing, Pearson
Education India, 2009.

[10] Mark Everingham, Luc Van Gool, Christopher K.
Williams, John Winn, and Andrew Zisserman, “The
pascal visual object classes (voc) challenge,” Interna-
tional Journal of Computer Vision, vol. 88, no. 2, pp.
303–338, 2009.




