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Abstract—Naval operations such as IPOE (Intelligence Prepa-
ration of Operational Environment) and explosive ordnance
detection often requires high-resolution surveys in shallow water
and surf zones. Surveying in such shallow water presents a variety
of operational challenges. The two fundamental constraints to
operating in shallow water are vehicle size and performance
degradation related to environmental constraints. To effectively
access shallow water, lightweight man-portable Autonomous
Underwater Vehicles (AUVs) are often desired. The sonar sys-
tem design and processing must also be equipped to handle
the challenges of the very shallow water environment, which
include sloping seabed surfaces, strong multi-path environments,
and highly nonlinear vehicle motion, all of which can impair
target detection and analysis. Synthetic Aperture Sonar (SAS)
performance can be optimized using performance prediction
models; however, currently available performance models do not
sufficiently include the challenges of working in shallow water.
In this paper we will develop a shallow water SAS performance
model and validate the results of SAS performance from two dif-
ferent shallow water surveys conducted using Kraken’s Miniature
Synthetic Aperture Sonar (MINSAS). The results show that the
MINSAS is particularly adept in shallow water conditions where
its narrow vertical beamwidths and coherent integration help
reject multipath and enhance target detection.

Index Terms—Synthetic Aperture Sonar, Sonar Imaging, Shal-
low Water, Multipath

I. INTRODUCTION

The significant propagation ranges of acoustic waves make
them an excellent tool for imaging targets on the seabed.
Environmental factors have a strong impact on a sonar’s target
detection and classification performance. Mission planning
requires a comprehensive understanding of sonar performance
in a wide variety of environments. Sonar performance predic-
tion is a well researched topic; however, current performance
prediction models fail to address the challenges of shallow
water environments, where target detection is a high priority.

Operating in shallow water with traditional survey vessels
is difficult and dangerous and thus small AUVs are desired
for shallow water surveys. Man-portable AUVs are quickly
becoming the platforms of choice due to their ease of han-
dling and efficient deployment. Man-portable AUVs require
miniaturized components, low power consumption, high-grade
navigational sensors, and an imaging sonar capable of high
area coverage rates and high resolution. Synthetic aperture
sonar (SAS) is well suited to seabed survey operations because

it can achieve a high area coverage rate at constant, centimeter-
scale resolutions. SAS achieves these gains by coherently
integrating successive pings as a small physical array moves
to synthesize a larger array. SAS payloads on Man-Portable
vehicles provide the operator the capability of larger vehicles,
without the additional weight and handling requirements. The
unique modular embodiment and compact size of Kraken’s
Miniature Synthetic Aperture Sonar (MINSAS) make it well
suited for small man portable AUVs often used for shallow wa-
ter surveys. The MINSAS can be composed of 1 to 4 receiver
modules, where each module dimensions are 53×3×7 cm
and weigh 6.4 kg in air. The MINSAS operates at a centre
frequency of 337 kHz with a bandwidth of 40 kHz. The
MINSAS produces images with 3 cm resolution in the along
and across track directions.

Multipath interference in SAS data reduces the SNR and
leads to reduced image contrast, impaired target detection,
and degraded motion compensation performance. Many per-
formance prediction models do not include multipath effects,
or if they do, they do not consider all the multipath propagation
paths. In shallow water, interference from a variety of different
sources and multiple bounces can become significant, and thus
must be included to accurately predict shallow water perfor-
mance. Current performance prediction models also assume
a flat seabed. Shallow water areas are often characterized
by upward sloping seabeds. An upward sloping seabed will
cause multipath to increase with range in the across track
direction. In this paper, we will introduce a robust performance
prediction model capable of simulating a realistic shallow
water environment. To validate the new model, shallow water
SAS data collected on both an AUV and Kraken’s actively
controlled towfish will be compared to model predictions.

II. SHALLOW WATER PERFORMANCE PREDICTION MODEL

The shallow water performance prediction model incorpo-
rates SAS gains and conditions unique to the shallow water
environment into the active sonar equation (1), where SL is
the source level, TL is transmission loss, NL is noise level,
DI is the directivity index, and DT is the detection threshold
set by the operator.

SL− TL+ TS −NL+DI > DT (1)



The shallow water effects included in the model are multi-
path, sloping seabed, and strong vehicle motion. The measured
source level for the MINSAS is 210 dB. The directivity index
is estimated using a model for both transmit and receive.
Through the noise level term we account for ambient noise,
electronic noise, and the multipath scenarios discussed in
Appendix A. The ambient noise level is estimated based on
the Wenz curve [1], which uses the sea state as well as the
centre frequency and bandwidth of the receiver.

For this paper, the target of interest is the seabed. The
performance prediction model estimates the seabed target
strength using the Elastic Seabed Bottom Backscatter model
described in Appendix B. We account for the the SAS gain
in the target strength term. Note that for this study we are
modeling the target strength of the seabed, and not an object,
and thus the pulse compression gain does not need to be
corrected for. The pulse compression gain does not apply to
seafloor sediment because the increased echo level is exactly
offset by the reduction in echo level due to the reduction in
the size of the resolution cell from CT

2 to C
2B , where T is the

pulse length and B is the bandwidth.
Due to coherent pulse integration, the SAS gain SG will

increase the SNR at a rate expressed by (2), where D is the
along track image resolution; however, the noise in the signal
will also increase through pulse integration. The rate of the
SG gain for the seabed and the noise is not necessarily equal.
Due to the random nature of the noise in a given pulse, the
noise level will experience a gain (SGN ) at the rate of (3) and
thus this gain must be accounted for in the model [2].

SG = 10 log10

(
LSAS

D

)
(2)

SGN = 10 log10
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D

)
(3)

III. TEST DATA

A. Study Area 1: Lake Ontario

In September 2017, Kraken conducted surveys in Lake
Ontario in search of AVRO Arrow models. Sonar imagery was
collected with Kraken’s MINSAS60 (single receiver module
per side) onboard the Kraken ThunderFish AUV. The MINSAS
was operated at a pulse repetition interval of 0.135 s with a
pulse length of 1 ms. During this survey the sea state was
one and the wind speed was negligible. Since Lake Ontario
is a freshwater lake, the salinity was assumed to be zero. The
water temperature was 20◦C. Previous geologic surveys of the
region indicate that the bottom is composed of bedrock [3].
The bottom slope is 0.3% up towards shore.

We analyze both the port and starboard data from two legs
of the survey, collected in opposite directions approximately
1.5 km away from shore, in approximately 6.5 m water depth
at an altitude of 5 m. The leg spacing is 50 m apart, and thus
there was significant overlap in the survey data. This data set
was chosen as an example because in all four data sets there is

a strong and obvious multipath interference occurring at long
range (Fig. 1 & 2).

Fig. 1. Google Earth image overlaid with port and starboard SAS mosaics
collected during leg 1 of the Lake Ontario data set.

Fig. 2. Google Earth image overlaid with port and starboard SAS mosaics
collected during leg 2 of the Lake Ontario data set.

B. Study Area 2: Holyrood, NL

In June 2018, Kraken took part in the Shallow Water
Survey as part of the 8th International Conference on High
Resolution Surveys in Shallow Water. For this survey, Kraken
utilized the KATFISH actively controlled towfish equipped
with the MINSAS180 (three receiver modules per side). The
KATFISH was towed by the 43 ft long vessel MV Predator.
The survey was conducted in Conception Bay, near Holyrood,
Newfoundland, Canada. The MINSAS was operated at a pulse
repetition interval of 0.21 s with a pulse length of 1 ms. The
average tow speed of the KATFISH was 5.5 knots and the
average altitude above the seabed was 12 m. The wind speed



Fig. 3. SAS mosaic of shallow water data collected in Holyrood.

Fig. 4. Google earth image overlayed with cropped Holyrood SAS Mosaic.

during this survey was 15 knots and the sea state was three.
The water temperature was 7◦C. The survey area average water
depth was 17 m with a 16% seabed slope.

In addition to sloping seabeds and multipath, the Holyrood
survey environment was particularly challenging due to inter-
nal waves, large schools of fish, and sound velocity changes
due to freshwater runoff. Samples of the seabed sediment
were not collected. The sediment is therefore assumed to be
a medium sand. Despite these challenges the Holyrood SAS
data is an excellent data set for validating the shallow water
SAS performance model because there are areas where the

SNR can be observed to drop below zero (Fig. 3), as well
as areas where the sonar was able to image right up to the
shoreline (Fig. 4), depending on the roll angle of the towfish.

IV. MODEL-DATA COMPARISON

The Shallow Water SAS performance model was verified by
comparing the range-dependent SNR predicted by the model
to the measured range-dependent SNR, averaged over multiple
pings. The MINSAS is able to measure the SNR indirectly
using the vertically offset arrays used to measure bathymetry.
The SNR at each range of interest σ(r) can be calculated as

σ(r) =
c(r)

1− c(r)
(4)

where c(r) is the normalized cross-correlation of the signals
between the two vertically separated arrays.

A. Study Area 1: Lake Ontario

Since the motion and environmental parameters do not vary
significantly in the along track direction for each leg, the SNR
as a function of range was averaged over the entire image for
both port and starboard.

The modeled and measured SNR agree quite well in both
the port and starboard directions, with a majority of the errors
being less than 5 dB (Fig. 5, 6, 7, and 8). The slope in this
area is low and thus does not contribute significantly to the
difference in SNR performance when comparing up slope and
downslope SNR. In this case, it is primarily the roll of the
AUV that caused differences in the range performance between
images. The average measured roll was 1.5 and 2◦ for leg 1
and 2, respectively, causing differences in port and starboard
depression angles of 3 to 4◦. The MINSAS is mounted on the
vehicle at a depression angle of 10◦, so for leg 1 the depression
angle was rolled up to 8.5◦ on starboard and down to 11.5◦ on
port. This causes the leg 1 starboard (Fig. 5) to have a higher
SNR at the far ranges than the port data (Fig. 6). During leg 2
depression angle was rolled up to 8◦ on starboard and down to
12◦ on port, causing the starboard (Fig. 7) data to once again
have higher SNR than the port side (Fig. 8) at far range.



Fig. 5. Comparison of measured and modeled SNR for leg 1, starboard side.

Fig. 6. Comparison of measured and modeled SNR for leg 1, port side.

B. Study Area 2: Holyrood, NL

The Holyrood area has considerable motion variation in the
along track direction, with the most significant motion being
roll. Based on the measured roll (Fig. 9), the image will be
divided into three different sections to be averaged over 20
pings and compared to their corresponding model. The three
sections are centered at 100 m (2.5◦ roll), 240 m (−2.4◦ roll),
and 332 m (5◦ roll). Since the Holyrood data was collected on
the starboard side, a negative roll corresponds to a decreased
depression angle and thus we should expect improved range
performance at the 240 m location.

At the 100 m along track position the model is able to
predict the sonar performance reasonably well, with most
errors less than 5 dB. Except for at near range, where the
error is quite significant, possibly due to imperfect beampattern
inversion, changing seabed slope, or sediment type variation.

Fig. 7. Comparison of measured and modeled SNR for leg 2, starboard side.

Fig. 8. Comparison of measured and modeled SNR for leg 2, port side.

The model is able to accurately predict that at 100 m the sonar
is no longer recording signal from the seabed due to the roll
geometry. This appears in the measured SNR data as an SNR
low-point, followed by a slight increase as SNR due to the
signal becoming dominated by noise.

At the 240 m along track position, we see that, as predicted,
the SNR is much higher at range in this region of the image
because of the reduced depression angle. As with the 100 m
data, we see a large difference between the model and data
SNR at near range. At far range we observe strong agreement
between the model and the data SNR, with most errors less
than 3 dB.

At the 332 m along track position we find significant
variation between the model and the data. This variation is
likely due to the high instability of the towfish in this region.
Although we have attempted to account for roll, we did not
account for any of the other motion in the model. It is also



possible that with such a high roll (5◦), we are starting to
go into a region where sidelobes become significant, causing
interference in the data as well as inaccurate beampattern
inversion. It should also be noted that the model does not
include some of the other challenges experienced during the
Holyrood survey such as internal waves and water column
interference (schools of fish), both of which could alter the
measured SNR and could be of interest for future work.

V. CONCLUSION

In this paper we introduced a new shallow water SAS
performance prediction model that incorporates the shallow
water environment conditions not previously included in sonar
performance models. The model was also expanded to include
the vertical beampatterns and coherent processing that make
the MINSAS effective in shallow water. The new shallow
water performance prediction model has been validated using
two different shallow water data sets. In the very shallow
regime (6.5 m water depth) and benign slope environment
of Lake Ontario, the model was able to accurately predict
the SNR as a function of range. Given the large amount
of uncertainty of the environmental conditions in Holyrood,
the model was able to predict the sonar performance well.
The Holyrood environment is likely more complicated than
what our current model simulates. There may be varying
sediment types and non-linear slope, both of which could be
incorporated into the model in the future. Nevertheless, the
model correctly predicted changes in multipath performance
due to towfish roll angle. Improved beampattern inversion may
also be required for high instability conditions and should be
a topic of future work.

Fig. 9. Measured roll as a function of along track distance.

Fig. 10. Comparison of modeled and measured average SNR for 2.5◦ roll
location.

Fig. 11. Comparison of modeled and measured average SNR for −2.5◦ roll
location.

Fig. 12. Comparison of modeled and measured average SNR for −2.5◦ roll
location.



APPENDIX A
MULTIPATH SCENARIOS

1) Direct sea surface return
2) From projector, to seabed, to sea surface, and back to

hydrophone
3) From projector, to sea surface, to seabed, and back to

hydrophone (reverse of 2)
4) From projector, to sea surface, to seabed, back to sea

surface, and back to hydrophone
5) From projector, to seabed, backscattered to sea surface,

reflected to seabed, and forward scattered to hydrophone
6) From projector, to seabed, forward scattered to sea

surface, reflected to seabed, and backscattered to hy-
drophone (reverse of 5)

APPENDIX B
ELASTIC SEABED BOTTOM BACKSCATTER

This model is an updated version [4] of the APL-UW
backscattering model [5]. The model includes contributions
from the sediment interface roughness and volume scattering.
For roughness scattering, the model uses the small-slope for-
malism of [6], adapted to elastic seafloors [7], [8]. For seafloor
volume scattering, the elastic perturbation approximation [9]–
[11] is used. The input parameters used to generate the
medium sand and silt sediments demonstrated in this paper
can be found in [4].
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