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Abstract

The calibration of cameras is a crucial step in machine vision and usually relies on an
accurate detection and localization of calibration patterns in images. Therefore, checker-
boards are often used, allowing precise subpixel estimation of their corners. However,
noise in localization generates a proportional noise in the derived model parameters.
Therefore, it is important that the localization has a certain robustness against image
noise. This is even more important for deteriorated imaging conditions strongly affect-
ing subpixel detectors. This paper presents a new checkerboard corner detector based
on a localized Radon transform implemented by large box filters making it robust to low
contrast, image noise, and blur while maintaining high subpixel accuracy.

1 Introduction
An optical camera projects light rays onto pixels according to their angle relative to the cam-
era and measures the light’s color or intensity. Hence, the image position of a point contains
information on its spatial position, which is used in various applications from photogram-
metry to object pose detection to image stitching. Beforehand, the mapping from pixel to
ray needs to be determined, i.e. the camera must be calibrated [17]. This is usually done by
detecting feature points on a physically known calibration object, mostly checkerboard cor-
ners, and fitting a camera model to that data. According to first order error propagation, the
resulting calibration error is proportional to the error in the detection and hence an accurate
checkerboard corner detector is needed.

This is even more relevant for in-field calibration (Fig. 1), where low contrast, image
noise and motion blur challenge the detector’s accuracy, and due to suboptimal checkerboard
placement this error is amplified in the calibration result. To improve calibration in such
imperfect conditions a new checkerboard corner detector is presented which is robust to low
contrast, image, noise and motion blur, because it is based on box filters suppressing noise,
instead of gradient filters amplifying it.

The article is structured as follows. In Section 2, a review over previous work related to
checkerboard and corner detectors is given. In Section 3, the proposed algorithm together
with its reference implementation is described. In Section 4, the results of synthetic tests and
real case experiments are discussed. Following this, the article is concluded in Section 5.
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(a) (b) (c)

Figure 1: Sample images drawn from two different datasets used for calibration: (a) calibra-
tion in controlled environments; (b-c) outdoor calibration.

2 Related Work
Checkerboard detection has mainly two aspects: The first is to detect the checkerboard as a
whole and distinguish it from other image content. This determines, in particular in difficult
conditions, whether the image can be used in the calibration or not. The second is finding
the accurate corner locations. This determines the accuracy and precision of the calibration
and is usually followed by a second step called sub-pixel refinement. Checkerboard corners
are well suited for this task because they have strong gradients in all directions.

The Harris operator [10] is the most well known corner detector often used in calibration.
Förstner proposed a sub-pixel corner localization method [6] frequently used as refinement
and also implemented (cornerSubPix) and used in OpenCV’s [1] camera calibration
pipeline. It exploits, that the image gradient — f [x,y] at a point ( x
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ĉx
ĉy
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Douskos et al. [4] use Harris corners with subpixel refinement to find the checkerboard
corners, later discarding false positives. They report a precision of 0.1 pixels. To find the
overall checkerboard, the median corner is set as origin and two neighbouring points with
strong edges to the origin are primary axes. Following this, additional points are successively
added.

Chu et al. [2] suggest a template matching approach on a binarized image, with a thresh-
old obtained from the image histogram.

OpenCV’s [1] checkerboard detector (findChessboardCorners) uses an adaptive
thresholding and erosion to binarize the image and separate the checkerboard squares into
quadrilaterals by contour following [16]. Finally, the checkerboard is detected as a 2D grid
of connected quadrilaterals. It follows the Förstner operator (1) for corner refinement.

Rufli et al. [14] improved the OpenCV approach for blurred and distorted images by
adapting the erosion kernels and by introducing a new linking heuristic for the quadrilaterals.

Ha et al. [9] suggest triangles rather than quadrilaterals as primitives for calibration pat-
terns for more precise localization in the fronto-parallel view, under blur and intensity noise.
For refinement a third order polynomial is fitted to the intensity surface function at the corner.

Overall, following Sinzinger [15], there are two models for a checkerboard corner: Black
and white sectors with centerlines (Fig. 2(a)) and a cross of edges (Fig. 3(b)). An edge
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(a) Centerline based junction model (b) Edge based junction model

Figure 2: Junction models

based view leads to algorithms based on gradients which are susceptible to image noise.
The proposed algorithm takes a sector based view to avoid this problem. In contrast to
previous works, it exploits the point symmetry of checkerboard corners with a localized
Radon transform approximated by box filters which is far less affected by image noise than
gradient based methods.

3 Corner Detection and Localization

The task of the corner detector is to identify points in the image which follow the corner
model 2(a) and ideally also localize them up to a fraction of a pixel without additional refine-
ment steps. In the case of checkerboard corners, all neighboring regions are point symmetric
to the desired point, unlike in most ”natural” corners. Therefore, centerlines of opposite
regions are viewed as a common centerline.

The underlying concept of the detector is now that the sum of all pixel values along the
centerline through the bright areas is higher than the sum of pixel values along the other
centerline through the dark areas. In fact, if the two paths used for summation/integration
belong to a checkerboard corner are its centerlines, the difference between both integrals
will be maximized. In all other cases, the value will be reduced by the amount the paths are
touching neighbouring regions and is zero for homogeneous image regions.

Assuming there is a function fc[x,y] which calculates the integral for all possible cen-
terlines around a given image point f [x,y] and returns the square difference of the maximal
integral value and the minimal integral value, checkerboard corners can simply be identified
with a min-max search by transforming the image into a response map using this function.
This is similar to the Harris detector response map [10]. However, instead of shifting window
patches in x and y direction of the image plane they are rotated around the selected point.
After local maximums are identified in the response map subpixel position of correspond-
ing corners can be estimated by subpixel peak algorithms. A comparison between different
algorithms is given in [5] and [11] , here Gaussian peak fit is used.

A closer examination of the requested function fc[x,y] reveals that it is in fact similar
to the Radon transform R f [r,a] [8] localized to each image point f [x,y] while setting r
to zero. This localized Radon transform R flocal [x,y,a] provides the integral for all possible
centerlines or rays for a given point coordinate x,y. Here, only the square difference between
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(a) Localized Radon Response (b) Derived Repsonse Map

Figure 3: Responses for a Checkerboard Corner

the strongest ray and the weakest ray is returned by fc[x,y] with m specifying how large the
corner is expected to be in the image.

R flocal [x,y,a] =
k=m
Â

k=�m
f
⇥
x+ k cos(a),y+ k sin(a)

⇤
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However, calculating the localized Radon transform for each image point would be
very time consuming. Therefore max and min are approximated by considering only a 2
{0, p

4 ,
2p
4 , 3p

4 } as angles.
This is possible due to the point symmetry of checkerboard corners generating a function

similar to a sine or cosine after the localized Radon transform is applied (Fig. 3(a)).

3.1 Implementation
Transforming an input image into a response map with this approximation can efficiently be
achieved by convoluting the image with box filters using a kernel size matching the consid-
ered window patch around a corner. But instead of rotating the filter kernels by an angle
a (steerable filter) the image is rotated counter wise, convoluted with two 1D kernels and
rotated back. This is motivated by the work of Maire [13] using the same approach to speed
up contour detection. In this case box filter kernels are used to calculate the integrals of a
localized Radon transform for pre-defined discrete ray angles.
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Each rotation combined with a convolution generates one new copy of the input image
blurred in a discrete direction. Therefore, a blur kernel size of n⇥m is used corresponding
to the windows size of the detector and is usually in the range between 1⇥3 and 1⇥9. It
could also be generalized to more than 1 pixel vertically to detected corners of a specified
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scale. In the next step, these blurred images are joined to a response map according to Eq.
3. A complete procedure of the detection is given below:

• Convert input image into a greyscale image.

• Supersample greyscale image by a factor of two to improve anti-aliasing.

• Rotate greyscale image around its center using the angles 0 and p
4 .

• Blur rotated images each with an n⇥m and m⇥n box filter resulting in twice as many images
as before and inflating the angle interval to [0,p[.

• Rotate blurred images back.

• Join images which are rotated back to their original orientation using Eq. 3.

• Blur resulting response map with a k⇥ k box filter to account for the discretization errors.

• Locate corners by searching for local maxima in the blurred response map.

• Use thresholding and nonmaximal suppression to filter out weak corners.

4 Evaluation
For evaluating the accuracy of the proposed checkerboard corner detector, it is tested on
synthetic corners subject to rotation, perspective distortion, subpixel shifts, Gaussian blur,
and Gaussian noise. As baseline, the sub-pixel corner localization method (1) proposed
by Förstner [6] and implemented in OpenCV [1] is used which is also utilized by many
checkerboard detectors as final corner refinement step such as [14] and [7]. In addition, a
checkerboard detector is implemented on top of the proposed corner detector and tested on
real images and compared against the checkerboard detector implemented in OpenCV [1]
also using Förstner’s sub-pixel corner localization.

4.1 Synthetic Datasets
The exact detector response to different corners is tested on a synthetic dataset. This allows
one to precisely vary different parameters having influence on the imaged corner appearance.
Here, each generated checkerboard corner is derived from the base checkerboard corner
displayed in Fig 4(a) (200⇥200 pixel). For the evaluation, this base corner is perturbed by:

• Subpixel shift

• Angle of rotation around the image center

• Perspective viewing angle of the corner

• Standard deviation sb of a Gaussian blurring Filter

• Standard deviation sn of Gaussian image noise

All used synthetic datasets are derived from this base checkerboard by altering one or
more of these parameters. However, after the base checkerboard corner is altered, only a
region of 16x16 pixel is used as input for testing the different detectors. Furthermore, the
blur kernel size of the proposed method is fixed to 1x9 pixel and the window size of the base
line algorithm to 9x9 pixel using at least 20 iterations. In addition, the proposed method
super-samples the response map by a factor of two to decrease rounding errors.
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(a) (b)

Figure 4: Localization errors for corners located at different subpixel locations. (a) base
checkerboard corner with zero shift; (b) location error of the proposed method in comparison
to OpenCV (dot plot) for corners shifted by a fraction of a pixel.

blur sigma = 1 blur sigma = 3 blur sigma = 5
(a)

noise sigma = 1 noise sigma = 9 noise sigma = 18
(b)

Figure 5: Localization error of the proposed method for a checkerboard corner: (a) localiza-
tion error over Gaussian blur; (b) localization error over Gaussian noise

For the first dataset the subpixel location of the checkerboard corner displayed in Fig.
4(a) is altered by small increments and used as input to calculate the localization error of the
proposed method which is plotted in Fig. 4(b). Here, the baseline algorithm has difficulties
to reliably estimate the subpixel location around one quarter away from a pixel boundary.

This different behaviour for various subpixel locations is reflected for the next datasets by
generating 1000 runs using a uniform distribution for the subpixel location of the corner in
addition to the altered parameter. For the second dataset the corner is blurred using different
standard deviations for a Gaussian Filter. The location error for the proposed and the baseline
method is plotted in Fig. 5(a) including the standard deviation of the localization error.
Here, the baseline algorithm performs better for blurred images while the proposed method
achieves its optimum already for crisp input data.

For the third dataset, the standard deviation of Gaussian noise and for the fourth dataset
the rotation angle is altered and the localization errors are plotted in Fig. 5(b) and Fig. 6(a).
The last dataset is generated by changing the viewing angle of the checkerboard corner in
respect to the camera Fig 6(b).
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rotate a = 15� rotate a = 30� rotate a = 45�

(a)
view angle 25� view angel 25� view angle 75�

(b)

Figure 6: Localization error of the proposed method for a checkerboard corner: (a) localiza-
tion error over rotation angle; (b) localization error over viewing angle

(a) (b)

Figure 7: (a) Localization error over Gaussian noise of an modified baseline method using
an additional filter stage of s = 3; (b) processing time for corner detection and localization
with and without anti-aliasing.

The baseline can be improved by a blur pre-filer to minimizing aliasing. However, this
holds only for noise free images and the performance under Gaussian noise would degenerate
as shown in Fig 7(a).

For online calibration it is essential to process incoming images fast enough to reduce
latency between displayed images and recorded ones. Here, the processing time of the pro-
posed method is mostly linear in respect to the input image size and plotted in Fig. 7(b). For
measuring the processing time, the proposed method was executed on a 2.3 GHz Intel Core
i7 for different image sizes utilizing one CPU core. The plotted data are the mean processing
time for a certain image size running 10 times to reduce the effects of other processes running
on the same hardware. The timing is given for the proposed method without an anti-aliasing
step which has approximately two times worse subpixel accuracy but requires considerable
less computing time.

4.2 Checkerboard Images

The proposed method has some additional advantages useful for a checkerboard detector,
such as supporting scale space [3] [12] or providing the angle of each corner by fusing the
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(a) (b)

Figure 8: Detection of Checkerboards using the proposed method: (a) response map calcu-
lation; (b) processing time for a checkerboard detection including subpixel estimation.

blurred input images using a subpixel peak detector estimating the angle of both centerlines.
In addition, it also can be directly used to estimate the subpixel location of each corner.
Based on this, a checkerboard detector is implemented which uses cross ratios to grow an
initial 3x3 checkerboard by adding more and more local maximums from the response map
stored in a k-d tree. The initial board is generated by drawing a random point from an initial
point set and by using the provided angles to search for neighbouring maximums in the
response map. Here, the proposed method is also mostly linear in the number of processed
pixels and usually outperforms the checkerboard detector implemented in OpenCV with
respect to localization error and processing time. The processing time for the detection of
the checkerboard visualized in Fig. 8(a) and scaled down to different image sizes is displayed
in Fig. 8(b) for the proposed and the OpenCV method.

The checkerboard detector is also tested on two real image sets using two different cam-
era setups. The first (Fig. 1(a)) was taken indoors in a controlled environment with a static
checkerboard while the second (Fig. 1(b)) was taken outdoors under difficult illumination
conditions and a quasi-static checkerboard setup introducing small amounts of motion blur.

For the checkerboard detection, the proposed method was compared to OpenCV’s imple-
mentation (9x9 window size). The result was passed through the exact same code to estimate
camera parameters and to calculate the remaining re-projection error of each checkerboard
corner. These errors are plotted in Fig. 9 as mean error for each image of the set. In case,
the checkerboard was not detected or the residual error was above 0.5 pixels the image was
excluded and is marked with a negative re-projection error in the plots.

The camera model could absorb a localization bias in the principal point. All other
parameters could only absorb an error with a rather complex systematic distribution in the
image. The authors therefore believe that the residual constitutes a valid metric of evaluation.

Here, the proposed method is outperforming the OpenCV implementation under all
tested conditions and results in considerable higher detection rates and a smaller re-projection
error. The resulting intrinsic camera parameters are displayed in Tab. 1 and 2. In particular,
the outdoor case shows a problematic increase of the re-projection errors for the baseline
method while the proposed method can maintain a relative small re-projection error.
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(a) (b)

Figure 9: Re-projection error of each detected checkerboard after calibration: (a) calibra-
tion in controlled environments; (b) outdoor calibration - negative values indicate that no
checkerboard was detected.

Proposed OpenCV
Focal Length 990.52 / 990.94 990.31 / 990.66
Principle Point 642.94 / 552.31 642.37 / 551.81
Radial Distortion -0.12172 / 0.12032 -0.11951 / 0.11917
Tangential Distortion 0.00316 / -0.00101 0.00316 / -0.00101
Mean Residual in pixel 0.0332 0.0391

Table 1: Camera Parameters - Indoors

Proposed OpenCV
Focal Length 746.49 / 745.86 746.79 / 745.48
Principle Point 514.66 / 512.73 514.12 / 514.12
Radial Distortion 0.01752 / -0.01585 0.02114 / -0.01993
Tangential Distortion 0.00062 / 0.002016 0.00147 / 0.000798
Mean Residual in pixel 0.0459 0.0738

Table 2: Camera Parameters - Outdoors

5 Conclusion

A new method for detecting and localizing checkerboard corners with subpixel accuracy was
presented required for accurate camera calibration. It utilizes point symmetry of checker-
board corners in combination with a localized Radon transform approximated by box filters
to achieve high performance even on large images. Here, tests have shown that the ability
to localize checkerboard corners is close to the theoretical limit of 1

100 of a pixel [11] while
being considerably less sensitive to image noise than standard methods. Furthermore, due
to the usage of simple image processing primitives such as blur and rotate, it can be easily
implemented on GPUs and embedded systems to serve as fast, robust, and accurate detector
for checkerboard calibration targets.
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