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Abstract—The Sub-Bottom Imager™ (SBI) is a sub-bottom
inspection tool that offers 3-D real-time imaging. The SBI has
a well-established commercial track record of accurate detection
and positioning of buried boulders and potential unexploded
ordinance (p-UXO), validated through directed field verifica-
tions and excavations. However, inefficiencies can arise during
the target picking and interpretation phase, as a considerable
amount of human and computer interaction is required. With
the growing increase in data collection and acquisition time, this
has become a time-consuming process. To address this, a 3-D
U-Net convolutional neural network that performs volumetric
image segmentation was developed. The model was trained with
sub-bottom imagery from geohazard surveys collected during
previous SBI campaigns and their associated binary labels. Due
to the significant data imbalance, the mean intersection over
union (mean IoU) was used to evaluate the accuracy of the
predictions. The initial results have been encouraging, achieving
a mean IoU of 70 % and 60% on the training and validation
data, respectively. Analysis of the model predictions show the
model is capable of distinguishing anomalies from the seabed
response, noise, and other large scale artifacts. This preliminary
work demonstrates our initial results, lessons learned, and future
directions and developments. To our knowledge, this is the first
application of 3-D U-Net to a sonar application.

Index Terms—sonar, synthetic aperture, volumetric imaging,
sub-bottom imaging, U-Net, 3-D U-Net

I. INTRODUCTION

Buried anomaly (boulder and p-UXO) detection is required
for a variety of applications including oil and gas infrastructure
construction and maintnence, wind turbine installation, and
infrastructure decommissioning. Such applications typically
require high imaging resolution over large areas. High res-
olution at high area coverage rates can be efficiently achieved
through SAS processing. SAS enables high spatial resolution

by coherently combining acoustic returns as the sonar platform
moves in the along-track direction to synthesize a large virtual
array. The resolution obtained using SAS is independent of the
sensor’s range and the depth to the target.

The SBI, developed by PanGeo Subsea, is a novel system
that provides high-resolution sub-bottom investigations with
real-time 3-D imaging. Its novelty relies on the combination
of beamforming with SAS processing, and the use of an
inertial navigation system (INS) that allows for accurate source
and receiver positioning and orientation. For its source, the
SBI utilizes three chirp sonar projectors that sweep through
frequencies of 4.5 - 12.5 kHz. For its receivers, it employs
a 40-channel linear hydrophone array that has an overall
length of 3 m (Figure 1). The SBI uses an INS that provides
accurate positioning and orientation of the hydrophone array
when each chirp transmits a pulse. Depending on the survey
requirements, the system’s frame can be adjusted to fit onto
an ROV or mounted to a towfish. The SBI system can
image, in real-time, a 5 m wide by 8 m deep section of the
seabed while moving with a speed of 1.6 m/sec and flying
at a height of approximately 3.5 m above seabed. The SBI
velocity is limited to 1.6 m/sec to avoid spatial aliasing in
the imagery. The SBI utilizes a delay and sum beamformer
with fixed aperture processing in the across-track direction
and synthetic aperture processing in the direction of travel.
In the across-track direction, the SBI achieves a resolution of
3.3°, thus the across-track resolution degrades with depth in
the seabed from 20 cm at the interface to 60 cm at 8 m depth.
SAS processing in the along-track direction yields a range
independent resolution of 20 cm and the depth resolution of
the SBI is approximately 9 cm.



In addition to environmental and electrical noise, sub-
bottom imagery features many different types of scattering
phenomena (sediment layers, heterogeneous seabed, multipath,
etc.) that appear similar to target anomalies (geohazards and p-
UXOs) or occlude the target anomalies. Due to this, anomaly
detection typically requires subject matter expertise with train-
ing in interpreting SBI data. The anomaly selection process is
time consuming; it is repetitive, yet tedious, making it a high
priority task to automate. Due to the challenging nature of
the dataset, deep learning is best suited for the task. Through
deep learning, it is expected that SBI anomaly detection will
be faster (more cost effective), safer (less time spent operating
offshore), and more consistent (less subjective and reduced or
at least consistent biases). With these objectives in mind, we
develop a volumetric deep learning architecture based on the
U-Net model [1]. The U-Net architecture has been success-
fully extended to volumetric imagery in the medical imaging
community [2], [3]; however, to the authors’ knowledge this
is the first application of the U-Net architecture to volumetric
seabed imagery. This paper will focus on presenting techniques
for maximizing the predictive power from challenging datasets
that are class imbalanced, noisy, and small.

Fig. 1. Diagram of the Sub-Bottom Imager™ (SBI)

II. METHODS

A. Training Data

The training and validation data consisted of 250 image
volumes of the size 3 m x 10 m x 8 m in the across
track, along track, and depth directions, respectively (Figure
2, top). Each imaging volume contained a random number of
discrete anomalies (boulders and p-UXOs) with various sizes.
The image volumes were converted to voxelized matrices
for input into the 3-D U-Net model. The bottom image in
Figure 2 shows a y and z (depth) axis slice through a target
anomaly located in the voxelized matrix at approximately -2
m depth and centered around 5.2 and 3.6 m in the x and y
axis. Training labels were generated using the python-based
graphical image annotation tool labelme (https://github.com/
wkentaro/labelme). To use labelme, each voxelized matrix was
sliced into 2-D imagery along the depth axis. The 2-D image
slices were then used for labeling regions as target (anomalies
present) and background (no anomalies present). Labelling

was performed by subject matter experts. The binary labelled
images were then stacked back into a volumetric matrix of
equal size and shape as the training image.

Fig. 2. Top: Rendering of a SBI seabed volumetric image used to train the
3-D U-Net model. Bottom: 2-D slices along the y and z (depth) axis to show
target anomaly located inside the volumetric image above.

B. Model Architecture

We use a fully connected convolutional neural network
(FCN) [4] to perform volumetric image segmentation. Here,
we adapt the U-Net architecture [1] to be suitable for three
dimensional acoustic imagery, we refer to this architecture as
3-D U-Net. We chose to follow the U-Net architecture because
it is considered one of the top performing semantic segmenta-
tion architectures in the biomedical imaging community, with a
track record of performing well with small training sets [5]. U-
Net has an encoder/decoder architecture; the encoder follows
the contracting path and is effectively a classification network
and the decoder follows the expanding path. The encoder part
of the U-Net architecture consists of convolutions and max
pooling operations that capture fundamental characteristics
of the input image into low-resolution feature maps. The

https://github.com/wkentaro/labelme
https://github.com/wkentaro/labelme


decoder part takes these low-resolution maps and upscales
them to high-resolution feature maps by passing them through
transposed convolutions and concatenation operations.

C. Training Pipeline

The image volumes are high density and thus memory
intensive. To efficiently store, access, and process the im-
age volumes on the fly we utilized TensorFlow TFRecord
files (https://www.tensorflow.org/tutorials/load data/tfrecord).
The TFRecord format utilizes protocol buffers to efficiently
serialize structured data. The TFRecord format can store
multiple image volumes and their corresponding labels in
one file. For efficient file reading, we follow the Tensorflow
recommendation of storing our data in multiple TFRecord files
of size 100 MB. This equates to storing 4-6 voxelized image
volumes, their corresponding masks, and metadata (volume
shape and sample name). The TFRecord files were written in
the order that they were processed and labelled. This means
each TFRecord file includes image volumes from similar
imaging regions. Data shuffling is required to ensure 1) the
training data is representative of the entire dataset and 2)
there is no discernible order to the data as it’s presented to
the model. To sufficiently shuffle the data in the TFRecord
files we start by shuffling the order of the TFRecord files,
followed by an interleaving of the records from different files.
These records are then split into 80 % for training and 20 %
for validation. We can then parse 40 records from each of the
training and validation datasets to be preprocessed and shuffled
before being fed into the model. For rapid processing and
memory efficiency we utilize prefetching to simultaneously
prepare the data and train the model. The prefetching was
enabled by parsing and preprocessing on the CPU while
training on the GPU. The training was done on a microserver
equipped with an NVIDIA GeForce RTX 2080 Ti R GPU
with 11 GB of RAM and a memory speed of 14 Gbps. The
preprocessing steps included:

1) Normalization of each image volume
2) Resizing each dataset to a cube, as needed by the 3-D

U-Net. Here, we use a cube size of 96x96x96 pixels.
3) Application of augmentations: random gamma, gaussian

noise, and random 90 degree rotations.

D. Feature Engineering

To suppress noise and other phenomena in the imagery the
first feature engineering technique we tested was applying
a contrast adjustment (i.e. dynamic scaling adjustment). We
tested multiple different dynamic scaling options through
qualitative, visual analysis; we found the best performing
dynamic scaling to be a sigmoid correction [6], with a gain
of 10 and a cutoff 0.85. As will be demonstrated in the
results section, the model was first trained to perform binary
semantic segmentation. However, we found the performance of
the binary segmentation to be unsatisfactory. We suspect that
one of the reasons why the model performs poorly on binary
segmentation is because of the extreme class weighting we
must apply to account for the dataset imbalance. Since 99.96 %

of the voxels in the dataset are background, we applied a
weighting of 4×10−4 to all the background pixels. This means
the majority of the voxels are weighted to nearly 0, which is
effectively equivalent to training on the target voxels only,
which is a very small amount of data overall. To test and
possibly overcome this class weighting issue we introduced
artificial classes to the dataset. Artificial classes were generated
in an unsupervised manner by splitting the background voxels
into multiple different classes based on their intensity. The
background class was split into ten artificial background
classes to form an 11-class semantic segmentation problem,
which increases the weighting for the background voxels by
a full order of magnitude. Introducing artificial classes to the
training data changes the segmentation problem from binary
to multi-class, meaning the model inputs, activation functions,
and loss type must change accordingly. In section III we will
present model training results from three different versions of
the model: no feature engineering applied, sigmoid correction
applied, and sigmoid correction and artificial classes applied.

E. Hyper–parameter Selection

Hyper–parameter selection is an important task for maxi-
mizing model performance. We tested a number of different
parameters, the best performing parameters were:

• Regularization: we found l2 regularization performed
better than l1 regularization.

• Dropout and Batch Normalization: We tested a range
of dropouts from 0.1 to 0.5, with and without batch
normalization applied. We found the best combination
was to apply batch normalization and a dropout of 0.2.

• Activation: Sigmoid (for binary segmentation) and
Softmax (for multi-class segmentation)

• Optimizer: we tested a number of optimizers — Adam,
NAdam, RMSprop, SGC— and found that the Adam
optimizer with a learning rate of 1 × 10−4 worked the
best in this problem.

• Loss: We utilized binary Cross-entropy (for binary
segmentation) and Categorical Cross-entropy (for multi-
class segmentation)

F. Model Evaluation

To evaluate the accuracy of our prediction we used the
mean intersection over union (mean IoU). This is a common
evaluation metric for semantic image segmentation tasks with
unbalanced datasets. While some metrics, such as accuracy,
are sensitive to dataset imbalances, the mean IoU is class
imbalance insensitive because it computes the intersection over
union for each class and then calculates the average over
classes. The IoU is defined as follows:

IoU =
TP

TP + FP + FN
, (1)

where TP is number of true positives, FP in the number of
false positives, and FN is the number of false negatives. For
the case of artifical classes, before computing the mean IoU,
we converted all the background classes back to one class,
which we refer to as the masked mean IoU.

https://www.tensorflow.org/tutorials/load_data/tfrecord


Fig. 3. Mean IoU and loss for model trained on binary masks without sigmoid correction to the imagery.

Fig. 4. Mean IoU and loss for model trained on binary masks with sigmoid correction to the imagery.

Fig. 5. Mean IoU and loss for model trained on multi-class masks using artificial classes and sigmoid corrected imagery.



III. RESULTS AND DISCUSSION

Each of the three versions of the model were trained over
250 epochs with early stopping on the performance plateau.
While the model without any feature engineering techniques
applied shows some evidence of learning, it rapidly plateaus
at an unsatisfactory performance level in terms of the overall
achieved mean IoU (55 %) as well as the validation data loss,
which begins to increase after 10 epochs, indicative of over
fitting (Figure 3). The model that includes the sigmoid scaling
feature engineering technique shows an improved performance
in comparison to the previous model: the model reaches a
much higher mean IoU of 72 % and 60 % on the training and
validation data, respectively. But, the validation loss begins
to increase after about 25 epochs (Figure 4), indicating the
model is over fitting again. We also observe in Figure 4 that
there is a distinct undulation pattern for both the training and
validation mean IoUs as a function of epoch. Due to the black
box nature of neural networks we cannot know for certain
what is causing these undulations; however, we suspect they
are indicative that the model may be ”stuck” in a local minima
within the cost function. It’s possible that the gamma scaling
contributed to this behaviour by emphasizing targets as well as
some other non-target anomalies. When artificial classes are
applied to the sigmoid scaled volumes, we see a significant
improvement in the model behaviour. The loss function is now
smooth and consistent for both the training and validation data
(Figure 5); however after about 20 epochs we see the model
start to overfit. In terms of the mean IoU the model reaches a
maximum of 70 % and 60 % for the training and validation
data respectively.

We consider the model with both sigmoid scaling and
artifical classes to be our best performing model, and thus
we only show results from that model. Here, we present some
examples of 2-D image slices and their corresponding training
and prediction masks (Figure 6). The algorithm successfully
predicts anomalies when they’re present and successfully iden-
tifies other large artifacts or seabed anomalies as background.
However, the model struggles to distinguish target anomalies
from small artifacts in the imagery (Figure 6, third row). The
performance level of the model is not quite satisfactory for
utilization as a commercial tool; however, we believe the initial
results indicate that with further development the performance
can be improved to meet industry requirements. This further
development is currently ongoing and includes: an expanded
training dataset, refinements to the training data, improved
image processing techniques to reduce noise, stricter data and
label quality analysis, methods for simulated data generation,
and additional augmentation techniques.

IV. CONCLUSION

In this paper we have presented an adaptation of the U-Net
model for semantic segmentation of 3-D (volumetric) sonar
imagery. By introducing two feature engineering techniques
(sigmoid correction and artificial classes) we are able to
significantly improve the model loss behaviour, improving the
mean IoU by 15 % and 5 % for the training and validation

data respectively. The model can easily distinguish between
targets and large scale anomalies; however, it often falsely
identifies smaller artifacts as target anomalies. While the initial
result of a declining loss function and mean IoU at 60% is
encouraging, more development is required for the model to be
useful operationally. Future work will focus on preventing the
model from over fitting by suppressing noise in the imagery,
as well as exploring additional augmentation techniques and
simulation techniques.

Fig. 6. Examples of model predictions; left column contains the image slices,
the middle column represents the ground truth label, and the right column
represents the 3-D U-Net prediction. In the ground truth and predictions white
indicates target and black is background.
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