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Seabed Image Segmentation

Who should read this paper?
Anyone involved in seafloor mapping, characterization, or classification will be 
interested in this paper. The presented method is applicable to a wide range of 
purposes in academia and industry. The technique is useful for constructing 
georeferenced mosaics for purposes such as habitat mapping, geologic surveys, and 
hydrographic surveys. The method can also be used to generate complexity maps or 
to identify areas of interest for mine hunting, cable route planning, and infrastructure 
installment and maintenance for industries such as oil and gas or renewable energy.
 
Why is it important?
This paper demonstrates a seabed segmentation method that has been specifically 
designed for seabed imagery. The presented methods account for both the nature of 
the sonar and the complicated structure of the seabed, allowing them to outperform 
both commercial and open-source solutions. The resulting increased segmentation 
accuracy has the potential to improve seabed classification or characterization quality 
and save the ocean community a significant amount of time and resources. Although 
machine learning techniques for seabed classification is a well studied topic, the 
segmentation of large and complex seabed imagery has not been well addressed and 
demonstrated. This paper presents a novel unsupervised segmentation technique 
that rapidly generates maps that are accurate and interpretable. Unlike many of the 
open-source and commercially available image segmentation solutions, the technique 
described in this paper has been tailored to the unique challenges and properties 
of sonar imagery. The method has been formulated such that the output should be 
applicable to a wide variety of applications.
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ABSTRACT

Seabed image segmentation is an important product for a variety of fields including habitat 
mapping, geological surveys, mine countermeasures, and naval route planning. Developing a 
clustering algorithm that can both accurately segment and effectively generalize high-resolution 
imagery for different seabed types over large areas is challenging. In this paper, we evaluate 
the performance of a new unsupervised image segmentation algorithm. The method utilizes 
imagery derived features (intensity and texture) to identify clusters (different seabed types) in 
feature space while also encouraging local homogeneity. We demonstrate how spatially coherent 
k-means clustering can efficiently and accurately segment synthetic aperture sonar (SAS) images. 
Our experiments show that spatially coherent clustering can significantly increase segmentation 
accuracy relative to OpenCV k-means and ArcGIS Pro iterative self-organizing (ISO) clustering 
(up to 15% and 20%, respectively). 
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INTRODUCTION

Seabed image segmentation is an effective 
analysis tool that groups pixels with 
similar characteristics into distinct seafloor 
regions or types. This process is ideal for 
applications such as the production of seabed 
characterization charts for habitat mapping, 
and seabed complexity evaluation for naval 
route planning and mine countermeasure 
missions.  Most seabed segmentation 
workflows rely on acoustic imagery as it 
is one of the few tools that can efficiently 
provide wide area bottom coverage. SAS is an 
acoustic imaging technique that exploits the 
along-track motion of the sensor platform to 
synthesize an image at constant centimetric 
resolution across the entire swath. The range 
and frequency-independent resolution of SAS 
allows for high area coverage rates with high 
resolution. In a single day, a SAS survey can 
collect terabytes of data [Shea et al., 2014] 
covering upwards of 30-40 km2. Manually 
analyzing such a large amount of data for the 
purpose of seabed segmentation is not feasible, 
and thus machine learning approaches are an 
appealing alternative. Supervised segmentation 
techniques assume that the image statistics 
of the training and testing data are the same. 
If this assumption is violated, it will cause 
poor segmentation performance [Williams, 
2009]. Gathering enough training data to 
include all possible seabed types is non-trivial, 
and, therefore, it is ideal to use unsupervised 
segmentation instead. 

Many unsupervised clustering algorithms 
(such as k-means and ISO clustering) identify 
clusters based on feature vectors computed 
from the local properties of each pixel, and 

each pixel is labelled based on the cluster it 
falls within. The efficacy of feature-based 
clustering algorithms is highly dependent 
on the choice of input features. For some 
applications, using image intensity as the sole 
feature is sufficient for image classification. 
However, for seabed classification, more 
sophisticated input features are needed. Such 
features could include wavelet decomposition, 
Gabor filter banks, Haralick features, 
bathymetry, slope, and curvature [Brown et 
al., 2011]. The centimetric resolution of SAS 
captures the seabed texture in substantial detail, 
making texture-based classification a good 
candidate. In this paper, we demonstrate that 
simple measures of texture derived from SAS 
images, such as local range, standard deviation, 
and complexity, can be used to segment 
complex seabed images. 

Textural features have been used in many 
SAS seabed segmentation and classification 
studies [Williams, 2009; 2015; Cobb et al., 
2017; Fakiris et al., 2013; Diesing et al., 
2014; Cobb and Principe, 2011A]; however, 
the performance of feature-based clustering 
algorithms is often limited by a lack of 
spatial coherence [Zabih and Kolmogorov, 
2004] as similar regions in feature space do 
not necessarily correspond to nearby pixels in 
image space. For example, Williams [2009] 
has compared two feature-based clustering 
algorithms (spectral and k-means clustering) 
using either wavelet features or moment 
features (mean, variance, skewness, and 
kurtosis), which are similar to the texture 
measurements employed in this paper.  And 
in a similar study, Cobb and Principe [2011A] 
utilized autocorrelation features with k-means 
clustering to segment SAS images.  Although 
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both the aforementioned Williams and Cobb 
papers achieved promising results, the output 
segmentations are still poorly generalized and 
frequently misclassify rocks and ripples.  To 
address this, we have developed an automated 
segmentation algorithm that operates 
simultaneously in feature and image space by 
defining an energy function that has a penalty 
for both poor fit in feature space (data term) 
and lack of spatial coherence in image space 
(smoothing term). Typically, one of the 
spatial coherence terms is a smoothing term 
that is discontinuity preserving, such as the 
Potts model [Zabih and Kolmogorov, 2004; 
Kolmogorov and Zabih, 2004]. Additional 
image space cost functions can also be 
included [Kohli et al., 2009; Montoya-
Zegarra et al., 2015].  Minimizing the energy 
function using gradient-based methods is 
not computationally feasible; however, 
energy function minimization via graph cuts 
is highly efficient [Kolmogorov and Zabih, 
2004].  For image segmentation purposes, 
graph cuts are an attractive approach as they 
are capable of multidimensional optimization 
[Boykov et al., 2001]. 

Most previous SAS seabed segmentation 
papers have focused on simple binary 
classification examples over relatively small 
areas, leaving challenging datasets largely 
unaddressed [Williams, 2009; 2015; Cobb 
et al., 2017; Cobb and Principe, 2011A; 
Kohntopp et al., 2017; Cobb and Principe, 
2011B; Fakiris et al., 2013]. In this paper, 
we focus on developing methods to segment 
complex seabed types exhibiting three 
common challenges: ambiguous boundaries 
between seabed types, mixed sediment regions, 
and multi-class (3+ seabed types) image 

segmentation. Ambiguous boundaries can 
cause the appearance of “holes” or “islands” 
in the segmented regions. These regions can 
be defined as small groups of pixels with 
an assigned label that is different from the 
larger surrounding region. This is a common 
issue in image segmentation, and they are 
typically removed after clustering is complete 
using techniques such as morphological 
operators [Szeliski, 2021]. The methodology 
of such techniques vary but most require 
thresholding [Szeliski, 2021]. The difficulty 
with thresholding is that determining a 
threshold that is suitable for all images is not 
always possible. When there are regions with 
two seabed types mixed together, the resulting 
segmentation can become patchy and poorly 
generalized, making the images difficult to 
interpret and utilize [Cobb et al., 2017]. Image 
segmentation of multi-class images has not 
been thoroughly addressed in the SAS image 
segmentation literature. Although there are 
multiple SAS image segmentation papers 
that utilize multiple classes in their work, the 
images are so small that there is rarely more 
than two classes present in a given image 
[Williams, 2015; Cobb et al., 2017; Cobb 
and Principe, 2011B; Fakiris et al., 2013]. 
Multi-class sonar image segmentation can 
be difficult as different seabed types can 
have similar imagery derived features. Some 
multibeam echo sounder studies have tried 
using bathymetry and its derived features 
(slope, aspect, and curvature) to provide 
additional discriminating input features [Brown 
et al., 2011]. Utilizing numerous input features 
can significantly increase processing time. 
The usefulness of bathymetry and its derived 
features is also heavily dependent on the 
application. While such features can be useful 
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for some benthic habitat mapping applications, 
they may not be useful for all applications, 
such as mine countermeasures. Similarly, for 
most mine hunting applications, the quantity 
of interest is a map of object-detection 
probability. Thus, there has been some success 
in seabed segmentation for mine hunting using 
lacunarity [Williams, 2015]. Lacunarity is very 
efficient at distinguishing flat seabed types 
from variable ones such as rocks or ripples, but 
it cannot distinguish between different types 
of flat or complex seabeds [Williams, 2015]. 
Here, we take a more generalized approach to 
provide segmentation results that should be 
appropriate for a variety of applications.  

In this paper, we demonstrate how texture-
based, spatially coherent clustering can be 
utilized to segment large SAS images with 
complex seabeds using imagery collected with a 
Kraken AquaPix® Miniature Synthetic Aperture 
Sonar (MINSAS). The performance of various 
spatial coherence cost functions is evaluated, 
and the resulting segmentations are compared 
to open source software (OpenCV k-means) as 
well as commercially available segmentation 
software (ArcGIS Pro ISO clustering). 

TESTING DATA 

The SAS imagery presented in this paper 
was collected with a Kraken KATFISH® 
actively controlled towfish equipped 
with a MINSAS180 array (three receiver 
modules per side). The ambiguous boundary 
sample image (Figure 1) was collected 
off the coast of Rhode Island during a 
technology demonstration sea trial with the 
U.S. National Oceanic and Atmospheric 
Administration Office of Ocean Exploration 

and Research in 2019. The image was 
beamformed to 3 cm resolution over an area 
of approximately 115 m x 290 m (2,940 x 
8,101 pixels) and includes regions of rippled 
and smooth seabed. The example images 
for mixed sediment regions and multi-class 
segmentation (Figures 2 and 3, respectively) 
were collected on the Grand Banks of 
Newfoundland during the OceanVision™ Fall 
2020 campaign. OceanVision is a three-year 
Ocean Supercluster project focused on the 
development of new ocean technology for 
underwater data acquisition and analytics as a 
service. The aim of OceanVision is to address 
the surveying needs of a variety of marine 
sectors, including offshore energy, fisheries, 
aquaculture, ocean science, and underwater 
defence. The data from the OceanVision 
campaign was beamformed to a resolution 
of 2 cm. The mixed sediment regions image 
(Figure 2) is approximately 95 m x 440 m 
(4,804 x 21,878 pixels) and includes regions 
of sand and sand-mud mixture. The multi-
class image (Figure 3) has dimensions of 
95 m x 350 m (4,873 x 17,516 pixels) and 
includes rock piles, sand, and mud. 

METHODS 

Image Processing and Feature Generation
Each SAS image was preprocessed in the same 
way regardless of the segmentation algorithm 
used and was done as follows. To decrease 
computation time, each image was down 
sampled depending on the size of the image, 
where large images were down sampled more. 
A standard approach in machine learning is to 
make all images the same size; however, in our 
case the SAS images can have various aspect 
ratios. Down sampling all SAS images to the 



The Journal of Ocean Technology, Vol. 16, No. 3, 2021  121Copyright Journal of Ocean Technology 2021

Figure 3: Comparison of the 
segmentation of a complicated 
multi-class synthetic aperture 
sonar (SAS) image using ArcGIS 
Pro iterative self-organizing 
(ISO) clustering (top) and the 
l_1norm version of spatially 
coherent k-means clustering 
(bottom). Image includes 
three classes: rippled sand 
(green), mud and sand mix 
(yellow), and rock piles (purple). 
Segmentations are overlaid on 
the SAS images.

Figure 1: Comparison of a 
binary segmentation of a 
synthetic aperture sonar (SAS) 
image into rippled (purple) and 
flat (green) seabed using ArcGIS 
Pro iterative self-organizing 
(ISO) clustering (top) and 
the Potts version of spatially 
coherent k-means clustering 
(bottom). Segmentations are 
overlaid on the SAS images.

Figure 2: Comparison of a 
binary segmentation of a 
synthetic aperture sonar 
(SAS) image into mud with 
sand patches (purple) and 
sand (green) using ArcGIS 
Pro iterative self-organizing 
(ISO) clustering (top) and 
the structural similarity 
index measure (SSIM) 
version of spatially coherent 
k-means clustering (bottom). 
Segmentations are overlaid on 
the SAS images.
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same dimensions can cause the images to appear 
stretched or distorted. We have found that the 
down sampling based on image size does not 
cause issues with the clustering if the features 
are computed over the same area in ground 
range rather than number of pixels. As such, the 
ambiguous boundary sample image (Figure 1) 
was down sampled by a factor of two, and the 
mixed sediment regions and multi-class images 
(Figure 2 and Figure 3, respectively) were 
down sampled by a factor of four. After down 
sampling, the images were blurred using a two-
dimensional Gaussian smoothing kernel with 
standard deviation of two pixels to reduce the 
impact of image noise and speckle (interference 
phenomenon that causes bright and dark dots 
throughout the imagery). 

Regardless of the clustering method (k-means, 
spatially coherent, ISO), we computed a 
set of input features for each pixel. Many 
segmentation algorithms directly use pixel 
intensity as the sole feature. In addition to pixel 
intensity, we included three textural features: 
standard deviation, local range (neighbourhood 
maximum value-minimum value), and 
complexity. We calculated complexity as the 
ratio of the neighbourhood square average 
intensity to the standard deviation. This 
is effectively a simplified version of the 
methods presented in Fakiris et al. [2013] 
and Kohntopp et al. [2017], which calculate 
the mean and standard deviation over a set of 
rotated Haar-like features. Although the rotated 
Haar-like features can help provide a way to 
discriminate features, such as seabed ripples, 
they are sensitive to the number of rotations 
used, which means in practice the number is 
chosen on a per-image basis [Fakiris et al., 
2013]. Here, we focused on automated seabed 

segmentation and thus wanted to minimize any 
required user interaction, so we have chosen to 
only rely on simple measurements of texture. 

To gather sufficient statistics, each pixel’s 
textural features were calculated using 
approximately 3 x 3 m sliding window.  Since 
distance-based cost functions were used, all 
features were scaled such that their range in 
values was 0 to 1, ensuring all the features 
were given equal weight. In SAS imagery, 
pixel intensity can be useful for discriminating 
between different sediment types; however, 
when viewed at the individual pixel (or 
even small neighbourhood) level, it can be a 
misleading feature. For example, speckle noise 
or object shadows can cause high intensity 
variability over small areas. It was found that 
averaging the intensity metric over a 3 x 3 m 
sliding window was not large enough to negate 
the impact of this variability and a larger 
window of 5 x 5 m was required. 

Spatially Coherent k-means  
The problem of simultaneously minimizing 
cost functions in both feature space and image 
space can be expressed in terms of an energy 
function. We construct a specialized graph for 
the energy function to be minimized such that 
the minimum cut on the graph also minimizes 
the corresponding energy function.  The graph 
consists of a set of nodes (pixels) and directed 
edges that connect them. The minimum cut 
is a partition of the edges of a graph into two 
subsets (classes) that is minimal in terms of 
the energy function [Boykov and Kolmogorov, 
2004]. Here, we used the s-t minimum cut, 
which minimizes the total weight on the edges 
that are directed from the source side of the 
cut (current pixel labelling) to the sink side of 
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the cut (new possible pixel label, α) [Boykov 
and Kolmogorov, 2004]. To find the labelling 
that minimizes the energy over all pixel labels 
at once, we used the α -expansion move 
making algorithm. The α-expansion move 
making algorithm can approximate the energy 
minimization to a local minimum (which may 
not be the global minimum) [Boykov et al., 
2001] by starting from an initial labelling and 
making a series of moves to iteratively decrease 
the energy until the algorithm converges (the 
energy cannot be further minimized). However, 
this can only be done for a certain class of 
energy functions [Kolmogorov and Zabih, 
2004]. At each iteration, the α-expansion 
move allows any variable to either retain its 
current label or take label α. The moves of the 
α-expansion algorithm can be represented as 
a vector of binary variables. The α-expansion 
move transformation function transforms the 
label of a variable xi  as 

         (1)

where xi is the current label for pixel i, and ti 
is a binary variable that determines whether 
a pixel should keep its label or switch to 
the new label. For multi-class (3+ classes) 
images, a single iteration of the α-expansion 
algorithm involves performing the expansion 
for all α in the label set L. 

In image segmentation, it is common to assume 
the energy function can be written as a sum of  
functions with up to two binary variables 
(clique size 2)

        (2)
 

Given an input set of pixels P and label set 
L, we want to find a mapping f from P to L 
(the labelling function) that minimizes the 
associated energy function [Kolmogorov and 
Zabih, 2004]. The energy function can be 
formulated as Markov Random Field with a 
standard form of 

 

        (3)
where N⊂P×P is a neighbourhood of 
pixels [Kolmogorov and Zabih, 2004]. 
For our purposes, we only consider the 
neighbouring pixel to the right and below 
each pixel p. It is possible to use four or 
even eight of the surrounding pixels but 
this would add significant computation time 
and requires a more sophisticated graph-cut 
implementation, which is unnecessary for 
our case. The unary clique (often referred 
to as the data term), Dp (fp), is the cost of 
assigning the label fp to the pixel p, which is 
derived from the observed data. The pairwise 
clique, Vp,q (fp, fq), is the cost of assigning 
the labels fp, fq to adjacent pixels p,q. 

The energy function formulation in Equation 
3 is not necessarily limited to two terms. 
Many papers have focused on including 
higher order clique terms [Kohli et al., 
2009; Montoya-Zegarra et al., 2015; Kohli 
et al., 2007]. In this paper, we evaluate 
the performance of additional terms (cost 
functions) that are limited to clique sizes 
of two or less, as shown in Equation 4, and 
follow a formulation similar to that in Kohli 
et al. [2007],  using the simple pairwise Potts 
term, Vp,q (Equation 6).
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The quantity Up,q (fp, fq) is a cost function that 
penalizes neighbouring pixels p,q for being 
significantly different in feature space, thus 
encouraging spatial coherence. 

Data Term  
For the data term, Dp(fp), we used the cost 
function from k-means clustering. The goal 
of k-means is to assign each pixel to one of K 
clusters in which each observation belongs to 
the nearest centroid (cluster mean). Effectively, 
it tries to minimize the intra-cluster distance 
while also maximizing the distance between 
clusters. To start, the centroids are randomly 
initialized. In what is known as the E step 
(Equation 5), each data point is assigned to the 
closest cluster. During the M step, a new set of 
centroids is computed by averaging all the data 
points that belong to each cluster. 

 

        (5)

Each variable xi is an element in the 
feature vector X, which can represent any 
measurable property or characteristic derived 
from the image. The feature vector can be 
n-dimensional, meaning multiple different 
features can be used, where the distance 
calculated in Equation 5 is the distance in 
n-dimensional feature space. 

Smoothing Term
The purpose of the smoothing term is to 

encourage homogeneity everywhere except 
at region boundaries. Here, we use the 
discontinuity-preserving Potts term 

        (6)

where λ1 is a weighting coefficient and T(.) is 1 
if the argument is true and 0 otherwise [Zabih 
and Kolmogorov, 2004]. Experimentally, we 
determined that a choice of λ1 to be 2 or 3 
yielded the best and most consistent results. 

Additional Spatial Coherence Terms 
The spatial coherence term Up,q (fp, fq) is 
comprised of a cost function, υp,q (fp, fq), with a 
weighting coefficient,  λ2:

        (7)

The cost function, υp,q, represents the feature 
space distance between adjacent pixels, 
effectively penalizing adjacent pixels for being 
far apart in feature space. The performance of 
four different cost functions will be evaluated: 
l1norm, squared Euclidean distance (squared 
l2norm), the Huber function, and structural 
similarity index measure (SSIM). The Huber 
function is essentially a hybrid between 
l1norm and the squared l2norm [Hartley and 
Zisserman, 2004]  
 

        (8)

 

(4)
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The primary advantage of the l1norm is 
reduced sensitivity to outliers when compared 
to the squared l2norm; however, the squared 
l2norm is much more stable relative to the 
l1norm. The Huber function is quadratic for 
small values of the error, δ, and linear for 
values of δ beyond a given threshold. This 
threshold, b, is chosen to be equal to the 
outlier threshold, giving it the outlier stability 
of the l1norm, while allowing it to behave 
like the squared l2norm below the outlier 
threshold [Hartley and Zisserman, 2004]. 
Experimentally, we found setting the threshold 
to b =0.001 yielded the best results. 

The SSIM is often used for measuring the 
similarity between two images. The SSIM is 
not a distance function because it does not 
satisfy the triangle inequality; however, as a 
cost function, SSIM behaves similarly to the 
mean square error [Wang et al., 2021]. The 
SSIM has been found to be useful as a cost 
function in a variety of different applications 
[Wang et al., 2021; Zhao et al., 2017; Zeglazi 
et al., 2020] and thus we have chosen to 
evaluate it for spatially coherent clustering. 

The SSIM is inspired by the human visual 
system and is dependent on three different 
terms: luminance, contrast, and structure. 
The SSIM index is calculated using sliding 
windows (a and b) over the two images being 
compared. The similarity measure between 
windows a and b is 

 

       
where μa and μb are the average of a and 
b, respectively, σa and σb are the variance 

of a and b, and σab is the covariance of a 
and b. The regularization constants (c1 and 
c2) are calculated as c1 = (k1L)2 and c2 = 
(k2L)2, where L is the dynamic range of the 
pixel intensities or textural features, and k1 
= 0.01 and k2 = 0.03. Typically, the SSIM 
is computed using a reference image and 
the image of interest. Here, we computed 
the SSIM on each feature image by using 
the unshifted feature image as the reference 
image. The second input image was simply 
the same image shifted either to the left or 
up one pixel, effectively calculating the 
similarity between adjacent pixels. 

For each of the four cost functions, the 
weighting coefficients λ1 and λ2 were 
determined experimentally through trial 
and error. Although it may be possible to 
determine these weights through some form 
of optimization algorithm, this would be 
beyond the scope of this work (but it could 
be the focus of future work). Sensitivity of 
the segmentation accuracy to the chosen 
weighting coefficients is case dependent but 
generally not extreme; we have observed 
that changes in the weighting coefficients 
by ± 2 makes no significant change to the 
segmentation output. Table 1 is a summary 
of the optimal (best performing in terms 
of segmentation accuracy) weighting for 
each cost function. The four spatially 
coherent clustering methods that are 
based on Equations 4-7 will be referred 
to as l1norm, squared l2norm, Huber, and 
SSIM, in accordance with the form of the 
associated cost function Up,q(fp, fq). The 
spatially coherent clustering method that uses 
Equations 3, 5, and 6 will be referred to as 
the Potts method.

 (9)
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Commercial and Open Source Segmentation 
Software
To gauge the performance of the spatially 
coherent k-means segmentation, we compare 
the results to open source and commercially 
available segmentation software. The open 
source software we have chosen is the OpenCV 
k-means implementation, which operates 
as described in the ‟Data Term” section.  
The commercially available software is the 
ArcGIS Pro ISO clustering. Moving forward, 
we refer to the OpenCV k-means clustering 
implementation as k-means and the ArcGIS 
Pro implementation of ISO clustering as ISO. 

ISO clustering is an unsupervised classification 
tool that uses a modified migrating means 
technique often called ISODATA (Iterative Self 
Organizing Data Analysis Technique). Like 
k-means, ISO clustering starts by randomly 
initializing cluster centres and then iteratively 
computes the minimum Euclidean distance 
when assigning each pixel to a cluster. On 
each iteration, new means are calculated 
for each cluster based on the membership. 
Unlike k-means, the ISO clustering algorithm 
attempts to iteratively converge to the optimal 
number of clusters. The algorithm starts with 
the maximum number of classes (specified 
by the user) and, at the end of each iteration, 
merges classes together if there are not enough 
pixels assigned to a particular cluster or if 
two clusters are too close together in feature 
space (i.e., their statistics are too similar). The 
ISO clustering algorithm requires six user 

inputs. For all three sample images, we used 
the same parameters except for the maximum 
number of classes. We chose to specify the 
maximum number of classes to be the same 
number of classes input into the k-means and 
spatially coherent clustering algorithms. This 
ensured that the ISO software did not create 
extra classes that were not included in the 
manual segmentation and made the comparison 
between all clustering algorithms as similar 
as possible. For the rest of the parameters, we 
used the default settings: maximum number 
of iterations was 20, the maximum number of 
cluster merges per iteration was five, maximum 
merge distance was 0.5, minimum samples per 
cluster was 20, and the skip factor was 10. 

The ArcGIS Pro implementation of ISO 
clustering does not have the capability to 
compute texture information and only allows 
one input raster (feature image) at a time. 
We tested the ISO clustering algorithm using 
a single input feature but found it yielded 
inadequate results. Instead, we chose to 
combine the features into one RGB composite 
image in ArcGIS Pro by assigning each of the 
features to a single band in a raster dataset. A 
composite raster is not limited to three input 
channels like an RGB image, a composite 
raster can be made by combining any number 
of features or channels. The disadvantage 
to the composite raster is that the order of 
the bands input into the composite raster 
significantly impacts the output as each 
input band is assigned a portion of the 

Table 1: Experimentally determined optimal weighting functions for each cost function.
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electromagnetic spectrum to create a colour 
composite. We found the best feature order 
(lowest wavelength to highest wavelength) 
to be as follows: intensity, complexity, range, 
then standard deviation.  

Evaluation Criteria 
For each sample image, segmentation 
accuracy (relative to manual segmentation 
of the sample images), processing time, and 
“real-time ratio” are provided in a summary 
table. The accuracy is derived from the 
confusion matrix, which shows the number 
of correct and incorrect predictions for each 
class. The accuracy is computed by taking 
the trace of the confusion matrix and dividing 
by the total number of pixels.  The real-time 
ratio is the ratio of the time it takes to collect 
the SAS image to how long it takes to run the 
segmentation algorithm. This accounts for 
image size when evaluating processing times 
and provides an idea of how close to real time 
the segmentation algorithms can run. A real-
time ratio with a value greater than 1 means 
the algorithm runs faster than real time. 

RESULTS

Each sample image was chosen to be a 
representative of a different type of seabed 
segmentation challenge: ambiguous boundaries, 
mixed sediment regions, and multi-class 
imagery. In addition to the summary table, 
the segmentation result overlaid on top of the 
SAS image is shown from two of the different 

segmentation algorithms tested. Results from 
ArcGIS Pro ISO clustering and OpenCV 
k-means clustering yield very similar results. 
Thus, to reduce redundancy, only the ISO 
clustered image is included in this paper. For 
comparison, the second segmentation image is 
one of the spatially coherent k-means variations. 

Ambiguous Boundaries 
A common issue in image segmentation is 
the appearance of small clusters of pixels 
belonging to a particular class, often referred 
to as holes or islands. An example of an image 
with island regions can be seen in the top 
image of Figure 1. The primary reason these 
regions appear is due to ambiguous boundaries 
between different bottom types, preventing 
the clustering algorithm from delineating large 
continuous boundaries. In the case of Figure 1, 
there is no clear boundary between the rippled 
and flat segments of the image as the ripples 
tend to slowly fade along the boundaries. 

Table 2 indicates little segmentation accuracy 
is gained by utilizing spatially coherent 
clustering instead of the ISO or k-means 
clustering. This is because the islands occupy 
few pixels relative to the total number of pixels 
in the image. Thus, even when islands are 
numerous, they have minimal impact on the 
overall segmentation accuracy. Conversely, 
a significant improvement in the image 
segmentation can be observed when visually 
comparing the ISO or k-means clustering to 
the spatially coherent clustering methods. 

Table 2: Accuracy, processing time, and real-time ratio for the segmentation of the image in Figure 1.
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For example, relative to the ISO clustering 
segmentation (Figure 1, top), the Potts 
technique (Figure 1, bottom) segmented the 
smooth and rippled seabed more accurately 
and minimized the number of islands, making 
the image much easier to interpret. Overall, the 
spatially coherent clustering methods yielded 
similar results in terms of accuracy and visual 
comparison; however, the SSIM method 
required the least amount of computation time. 

Mixed Sediment Regions 
When segmenting geospatial imagery, it can 
be difficult for the clustering algorithm to 
generalize and form contiguous boundaries 
over large areas, especially in regions with 
mixed sediment types. Mixed sediment regions 
can cause the clustering algorithm to form 
patchy regions. These regions are similar to 
the holes/islands observed in the ambiguous 
boundary segmentation; however, these patchy 
regions tend to be larger and far more variable 
in size and shape. The top image in Figure 2 
is an example of an image with patchy regions 
caused by mixed sediment regions. 

The ISO clustering segmentation result follows 
the class boundaries well; however, it has not 
generalized well over the sand-mud mixed 
areas by separating them into sand and mud, 
making interpretation and application of the 
segmentation difficult (Figure 2, top). The 
k-means clustering yielded nearly identical 
results to the ISO (Table 3). Alternatively, the 
spatially coherent clustering removed most 

of the small patches of sand separated out 
from the sand-mud mix while still preserving 
the larger patches of sand (Figure 2, bottom), 
leading to an increase in accuracy by up to 6% 
(Table 3). As summarized in Table 3, the SSIM 
performs best in terms of accuracy; however, 
the Potts model runs slightly faster while 
achieving similar accuracy. The l1norm also 
has similar accuracy to Potts and SSIM but 
has a significantly longer processing time. The 
l1norm is slower than the Potts algorithm due 
to longer computation time on each iteration. 
Even though the l1norm is faster than the 
SSIM on a per iteration basis, it is still slower 
overall as it requires about twice the number of 
iterations to converge. 

Multi-class Images 
Multi-class seabed segmentation can be 
challenging because many different types of 
sediment can be located in similar regions 
in feature space. For example, the image 
in Figure 3 has three classes: rippled sand, 
mud/sand mix, and rock piles. Both ripples 
and rocks tend to have a highlight followed 
by a shadow, causing ripples and rocks to 
appear similar in feature space, deceiving the 
k-means and ISO clustering implementations 
to cluster rock piles and ripples together 
(Figure 3, top). Including spatial coherence 
in the segmentation provides an opportunity 
for the spatially coherent k-means algorithm 
to distinguish the rock piles from ripples 
and even small individual rocks (Figure 
3, bottom). Both the l1norm and the SSIM 

Table 3: Accuracy, processing time, and real-time ratio for the segmentation of the image in Figure 2.
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versions of the spatially coherent k-means 
increase the segmentation accuracy by just 
over 15% relative to k-means and almost 
20% relative to ISO (Table 4). Both the 
l1norm and the SSIM were able to converge 
faster than real time; however, the SSIM 
converged significantly faster. The Potts 
model also converged faster than real time 
but resulted in an accuracy about 3% lower 
than SSIM and l1norm. 

DISCUSSION

Both the ArcGIS Pro ISO and OpenCV 
k-means clustering can consistently run 
significantly faster than real time; however, 
they struggle to accurately classify SAS 
images in a generalized and contiguous 
fashion. The similar performance of both 
the open source and commercially available 
software demonstrates that, currently, the 
applicability of off-the-shelf clustering 
solutions for SAS image segmentation 
is limited. The significant increase in 
segmentation quality and accuracy observed 
consistently across all variations of the 
spatially coherent k-means clustering 
algorithms is a clear indication of the merits 
of this new class of segmentation algorithms 
for sonar imagery. 

For spatially coherent k-means segmentation, 
the Potts, l1norm, and SSIM-based cost 
functions consistently run faster than real 
time. Thus, although these spatially coherent 

k-means implementations are slower than ISO 
and k-means, this should not significantly 
hinder processing flow. Interestingly, the 
SSIM-based cost function is slower on a per-
iteration basis, but it takes approximately half 
the iterations to converge, making it faster 
overall. This indicates that the human visual 
system basis of the SSIM may be a more 
informative measure of spatial homogeneity 
than traditional cost functions. In our tests, the 
SSIM-based cost function works consistently, 
but it is not guaranteed to converge, and thus 
future work should focus on further testing 
the stability of the SSIM as a cost function. 
In terms of cost functions that are guaranteed 
to converge, the l1norm performs best in 
terms of the trade offs between accuracy 
and processing time. The Potts version often 
has a similar accuracy to the l1norm and is 
often (but not always) faster than the l1norm, 
making it an appealing option as well. It is 
likely that the l1norm gets its slight accuracy 
advantage over the simple Potts cost function 
because of its relatively low sensitivity to 
outliers [Hartley and Zisserman, 2004]. The 
Potts solution is guaranteed to converge on 
a solution that is within a factor of two from 
the global minimum [Boykov and Veksler, 
2006]; however, there is no such guarantee 
for the cost functions tested, and thus some do 
not perform as well. For example, the squared 
l2norm and Huber function are consistently 
significantly slower than all the other methods 
with no added accuracy and thus are not 
recommended as additional cost functions. 

Table 4: Accuracy, processing time, and real-time ratio for the segmentation of the image in Figure 3. 
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CONCLUSION
 
In this paper, we presented spatially coherent 
k-means clustering, a segmentation algorithm 
that operates simultaneously in feature and 
image space using graph cuts to efficiently 
compute an optimal segmentation solution. 
We have demonstrated that this new 
algorithm can accurately segment a variety 
of challenging seabed types, including 
ambiguous boundaries, mixed sediment 
regions, and multi-class images. In terms of 
accuracy, spatially coherent k-means was 
able to outperform both OpenCV k-means 
and ArcGIS Pro ISO clustering. Due to the 
graph cut process, the spatially coherent 
k-means does require a longer computation 
time; however, in most cases this increased 
processing time should not significantly 
hinder data processing flow. Depending on the 
cost function used, the computation time of 
the spatially coherent clustering can be close 
to or even faster than real time. The SSIM-
based cost function performed best in terms of 
accuracy and computation speed; however, it 
is not guaranteed to converge. A safer option 
is the l1norm, which has similar accuracy. 
Future work will focus on further testing 
spatially coherent k-means on more datasets 
and accelerating the spatially coherent 
k-means clustering through code optimization 
and GPU acceleration. 
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